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Zusammenfassung

Bei der Softwareentwicklung entstehen verschiedene Anforderungen, die zueinander in
Beziehung stehen konnen. Diese Beziehungen werden mit Nachverfolgbarkeitsverbindun-
gen (engl.: trace links, TLs) repréasentiert, die verschiedene Vorteile bieten, jedoch héaufig
gar nicht oder inkonsistent erfasst werden. Deshalb beschaftigt sich die Forschung mit der
Wiederherstellung von TLs zwischen Anforderungen, fiir die es verschiedenste Ansitze gibt.
Neuere automatisierte Ansétze verwenden haufig Feinanpassung oder Prompting, da sich da-
mit oft bessere Ergebnisse erzielen lassen. Aktuell ist jedoch unklar, welche Feinanpassungs-
und Prompting-Ansatze in welchen Anwendungsfillen die beste Performance liefern, da
bislang kein umfassender Vergleich zwischen ihnen unternommen wurde.

In dieser Bachelorarbeit wird daher ein solcher Vergleich durchgefiihrt, um zu ermitteln,
mit welcher Anzahl an verfiigbaren Projekt-TLs welcher vollautomatisierte Feinanpassungs-
und Prompting-Ansatz in welcher Situation die beste Performance erzielt. Dazu werden
vier Szenarien betrachtet, in denen die Generierung und Vervollstandigung von TLs mit
und ohne die Nutzung von TLs aus anderen Projekten durchgefiithrt wird.

In Anwendungsfallen, in denen keine Projekt-TLs vorliegen und alle TLs generiert werden
miissen, liefert ein aktueller zero-shot Prompting-Ansatz die beste Performance, gemessen an
den F;-Werten. Sind einige Projekt-TLs vorhanden, die vervollstandigt werden miissen, dann
erzielt der gleiche zero-shot Prompting-Ansatz bei wenigen vorhandenen TLs die besten
F;-Werte. Wenn keine anderen Projekte mit TLs verfiigbar sind, dann wird im Durchschnitt
ab ca. 45 vorhandenen Projekt-TLs Feinanpassung zum besten Ansatz, gemessen an den
Fi-Werten. Liegen jedoch andere Projekte vor, dann ist dies schon ab etwa 20 TLs der Fall.

Die Ergebnisse dieser Arbeit liefern Praktikern, die sich mit der Wiederherstellung von
TLs befassen, eine Orientierungshilfe bei der Auswahl des leistungsfahigsten Ansatzes und
geben Forschern zugleich Hinweise auf mogliche Erweiterungen/Verbesserungen.
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1. Einleitung

Bei der Entwicklung und Wartung von Softwareprojekten entstehen verschiedene Artefakte,
wie beispielsweise Anforderungen. Diese Anforderungen konnen in verschiedenen Bezie-
hungen zueinanderstehen, da sie meistens nicht unabhangig voneinander sind [37]. Bei
Beziehungen zwischen High-Level-Anforderungen (engl.: high-level requirements, HLRs)
und Low-Level-Anforderungen (engl.: low-level requirements, LLRs) kann es sich beispiels-
weise um Verfeinerungen handeln [37]. Um diese Beziehungen zwischen Anforderungen
zu reprasentieren, verwendet man in der Softwareentwicklung standardmaflig TLs [14].
Werden TLs zwischen HLRs und LLRs innerhalb eines Softwareprojektes vollstandig erfasst
und dokumentiert, bieten sie viele verschiedene Vorteile [30].

In der Realitdat werden TLs zwischen HLRs und LLRs jedoch haufig gar nicht oder nur
inkonsistent erfasst, da der Aufwand bei der manuellen Ermittlung sehr grof3 ist [16, 25, 30].
Aus diesem Grund beschiéftigt sich die Forschung mit der automatisierten Wiederherstellung
von Nachverfolgbarkeitsverbindungen (engl.: traceability link recovery, TLR) von HLRs zu
LLRs, fir die es verschiedene Ansétze gibt [18, 30]. In neueren automatisierten Ansétzen fiir
die TLR von HLRs zu LLRs kommen vermehrt vortrainierte Sprachmodelle (engl.: pretrained
language models, PLMs) zum Einsatz, da sie in der Regel zu besseren Ergebnissen fithren
[21, 24]. Bei der Verwendung von PLMs fiir die TLR zwischen HLRs und LLRs kommt
entweder Feinanpassung zum Einsatz, bei der das Modell vor der Verwendung angepasst
wird, oder Prompting, bei dem das PLM ohne weitere Anpassung genutzt wird [21, 24].
Fiir Feinanpassung und few-shot/ multi-shot Prompting werden zwangsldufig annotierte
Daten beziehungsweise Trainings-/Beispieldaten (TBD) (TLs und Nicht-TLs) benétigt, fiir
zero-shot Prompting hingegen nicht.

Bei der TLR treten in der Realitiat sehr unterschiedliche Situationen auf. Einerseits gibt
es Projekte, in denen bislang keine TLs erfasst wurden. In diesen miissen also alle TLs
ermittelt werden (TL-Generierung). Andererseits gibt es Projekte, bei denen bereits ein
Teil der TLs vorliegt und vervollstandigt werden muss (TL-Vervollstandigung). Zusatzlich
kann es vorkommen, dass vollstindig annotierte Projekte zur Verfiigung stehen, bei denen
also bereits alle TLs ermittelt wurden. Aufgrund der unterschiedlichen Voraussetzungen
der Ansatzarten konnen nicht alle Ansétze in allen realistischen Szenarien gleichermafien
verwendet werden. Aulerdem unterscheiden sich die verschiedenen Feinanpassungs- und
Prompting-Ansétze in ihrer Leistung. Teilweile zeigt sich dieser Leistungsunterschied auch,
wenn andere Daten zum Training oder als Beispiele in Prompts genutzt werden. Dies wirft
die zentrale Frage auf, welcher Ansatz unter welchen Bedingungen die besten Ergebnisse
liefert. Diese Frage wurde noch nicht von der Forschungsgemeinschaft beantwortet, da



1. Einleitung

bislang kein umfassender Vergleich zwischen aktuellen Feinanpassungs- und Prompting-
Ansitzen durchgefiihrt wurde. Deshalb kann ein Praktiker aktuell nicht abschétzen, welcher
Ansatz die beste Leistung in seinem Anwendungsfall bringt.

Das Hauptziel dieser Bachelorarbeit ist es daher, zu ermitteln, mit welcher TBD-Anzahl
welcher Ansatz in welchem Anwendungsszenario die beste Performance erzielt. Dazu wird
ein systematischer Vergleich zwischen Feinanpassungs- und Prompting-Ansatzen fir die
TLR von HLRs zu LLRs durchgefiihrt. Zunachst werden geeignete Ansétze fiir die Unter-
suchungen ermittelt. Anschlieflend wird der eigentliche Vergleich in vier verschiedenen,
realistischen Szenarien durchgefiihrt, die unterschiedliche Anwendungssituationen der TLR
abbilden. In diesen werden TL-Generierung und TL-Vervollstindigung mit und ohne die
Nutzung anderer Projekte durchgefiihrt. In den Experimenten der Szenarien wird, wenn
moglich, die Anzahl der verfiigbaren TBD systematisch variiert und ihr Einfluss auf die
Leistung der Ansatze evaluiert. Im Anschluss werden die Ergebnisse der verschiedenen
Ansatze fur jedes Szenario vergleichend ausgewertet.

Die Bachelorarbeit ist wie folgt aufgebaut: In Kapitel 2 werden wichtige Grundlagen be-
schrieben und in Kapitel 3 wird der aktuelle Forschungsstand vorgestellt. In Kapitel 4 wird
eine begriindete Auswahl der TLR-Ansatze aus der Forschung vorgenommen. Zusitzlich
wird die Implementierung der ausgewahlten Ansatze dargestellt. In Kapitel 5 werden die
Szenarien und Experimente beschrieben und ausgewertet. In Kapitel 6 werden Bedrohungen
der Validitdt und Limitierungen der Arbeit aufgezeigt. Auflerdem wird ein Ausblick gege-
ben. Im abschlieBenden Kapitel 7 wird die Bachelorarbeit zusammengefasst und zusatzlich
werden Schlussfolgerungen gezogen.



2. Grundlagen

In diesem Kapitel werden Grundlagen vorgestellt, welche fiir das Verstandnis der Bachelor-
arbeit bendtigt werden. Ziel ist es, relevante Begriffe zu definieren und wichtige Konzepte
vorzustellen.

2.1. Nachverfolgbarkeit

Nachverfolgbarkeit (engl.: traceability) beschreibt die Moglichkeit, Artefakte aus der Soft-
wareentwicklung (Quelltext, Anforderungen, Testfalle, usw.) miteinander in Beziehungen
zu setzen und diese Beziehungen zu analysieren [14].

2.1.1. Nachverfolgbarkeitsverbindungen

Um diese Beziehungen zwischen Artefakten darzustellen, zu reprasentieren, zu dokumen-
tieren und zu analysieren werden in der Softwareentwicklung TLs verwendet [14]. Ein TL
verbindet immer jeweils genau zwei Artefakte miteinander [14].

TLs haben je nach Kontext und Artefakttypen unterschiedliche Bedeutungen [14, 21].
In dieser Bachelorarbeit sind ausschlief3lich HLRs und LLRs relevant. HLRs beschreiben
das System auf einer allgemeinen, iibergeordneten Ebene [32]. LLRs werden aus HLRs
abgeleitet [32], sind deutlich spezifischer und beinhalten technische Details [32]. Sie wer-
den von der Forschungsgemeinschaft teilweise auch Designartefakt genannt [12, 24, 40].
Bei TLs zwischen HLRs und LLRs handelt es sich demnach um Verfeinerungen bzw. um
Vorganger/Nachfolger-Beziehungen [37].

2.1.2. Wiederherstellung von Nachverfolgbarkeitsverbindungen

In der Praxis werden TLs gar nicht oder nur inkonsistent dokumentiert [16, 25]. Dies
erschwert die Nutzung und erfordert Ansétze zur nachtraglichen TLR.
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2.1.2.1. Definition

Formal sieht diese Aufgabe wie folgt aus:

+ Gegeben: Eine Menge Quellartefakte (QM) und eine Menge Zielartefakte (ZM) [14,
16].

+ Gesucht: Eine vollstandige Menge an TLs zwischen QM und ZM (TLM), wobei TLM C
OM x ZM [14, 16].

In der Praxis werden bei einigen Ansatzen zusétzlich noch annotierte Daten benétigt, z.B.
zum Trainieren von Modellen [24, 25]. Annotierte Daten fiir die TLR bestehen aus Paaren
von Quell- und Zielartefakten sowie der Information, ob zwischen diesen eine TL existiert
oder nicht.

2.1.2.2. Unterscheidungen

Die TLR kann man in verschiedene Arten unterteilen. Man kann TLs manuell, automatisiert
und semi-automatisiert ermitteln [14]. Bei der manuellen TLR ermittelt ein Mensch die TLs
[14], was sehr hohe Kosten verursachen kann [16, 30]. Bei der automatisierten TLR wird kein
Mensch benotigt, da die TLR mit automatisierten Techniken bzw. Werkzeugen durchgefiihrt
wird [14]. Die semi-automatisierte TLR ist eine Kombination der automatisierten und
manuellen TLR [14]. Die TLR-Anséitze, welche in dieser Arbeit untersucht werden, sind
automatisiert.

Es gibt zusatzlich eine Unterscheidung der TLR-Aufgabenart. Bei der TL-Generierung
miissen alle TLs eines Projekts ermittelt werden [24]. Bei der TL-Vervollstindigung hingegen
liegt bereits eine unvollstindige Menge an TLs aus dem Projekt vor und die restlichen TLs
miissen ermittelt werden [24].

2.2. Vortrainierte Sprachmodelle

PLMs sind Modelle, die Sprachstrukturen und Wahrscheinlichkeitsverteilungen innerhalb
von Texten erfassen [3, 41]. Es gibt eine grofie Bandbreite an verschiedenen PLMs. Im
Rahmen dieser Arbeit bezieht sich dieser Begriff jedoch ausschliellich auf Modelle, die auf
der Transformer-Architektur [41] basieren, wie z.B. BERT [8] oder GPT-3 [4].

Diese Modelle wurden bereits auf einer sehr groflen Menge an Textdaten ohne manuelle
Annotation vortrainiert, wodurch sie ein allgemeines Verstiandnis von natiirlicher Sprache
erlangten [4, 8, 25]. Das auf diese Weise erworbene Sprachverstandnis kann vom Modell
auf unterschiedliche Aufgaben, wie z.B. die TLR, tibertragen werden [25, 40].



2.2. Vortrainierte Sprachmodelle

2.2.1. Modellarten

Aus der Transformer-Architektur [41] sind verschiedene Arten von PLMs entstanden. Die
drei wichtigsten PLM-Arten verwenden unterschiedliche Teile der Architektur [26]. Encoder
verwenden den Encoder-Teil vom Transformer [41], Decoder nutzen den Decoder-Teil und
Encoder-Decoder implementieren die vollstindige Architektur [26]. Letztere Modellart
ist nicht weiter relevant fiir diese Bachelorarbeit, da sie hauptsichlich fiir Text-zu-Text
Aufgaben, wie z.B. Ubersetzung, verwendet wird [41].

2.2.1.1. Encoder

Encoder erstellen eine kontextuelle Reprasentation von Texten [8]. Sie werden fiir verschie-
dene Aufgaben wie Liickenfillung in Texten, Textklassifikation und Vorhersage nachster
Satze genutzt 8, 36, 43].

Bei der Verwendung von Encodern wird der Text zuerst in Tokens (Worter, Worterprafixe,
Wortersuffixe, Wortteile, Buchstaben, Satzzeichen, usw.) umgewandelt [41]. Diese Tokens
besitzen Vektorreprasentationen, welche an das Modell ibergeben und mit Positionsinfor-
mationen kombiniert werden [41]. Nachdem das Modell durchlaufen wurde, gibt es fiir jeden
Token einen Vektor aus, welcher die Bedeutung des Tokens im Kontext des Eingabetexts
beschreibt [8].

Beim BERT-Modell (Encoder) [8], welches unter anderem in dieser Arbeit verwendet wird,
gibt es spezielle Token, welche nicht aus dem Eingabetext extrahiert werden [8]. Diese
werden beispielsweise fiir die Textklassifikation (CLS-Token), zum Beenden oder Abtrennen
von Textsegmenten (SEP-Token) oder fur das Auffiillen von zu kurzen Texten (PAD-Token)
verwendet [8]. Zusammen kann man bei BERT [8] maximal 512 Tokens tibergeben [8].

2.2.1.2. Decoder

Decoder sind autoregressive Modelle, welche fiir die Texterzeugung genutzt werden [4, 41].
Da verschiedene Aufgaben als Text formuliert werden kdnnen, kann man Decoder auch fiir
die Losung verschiedener anderer Aufgaben nutzen [4, 39].

Fiir die Nutzung von Decodern wird der Prompt (Eingabetext mit der Aufgabenbeschreibung)
ebenfalls zuerst in Tokens und dann in Vektorreprasentationen umgewandelt [4, 41]. Diese
Reprasentationen werden auch wieder mit Positionsinformationen kombiniert und dann
dem Modell als vorherige Ausgabe iibergeben [4, 39, 41]. Das Modell ermittelt dann ein
néchstes Token [4, 41]. Welches Token ausgewahlt wird, héangt nicht nur von den vorherigen
Tokens ab, sondern auch von anderen Faktoren, wie dem Zufallswert (engl.: random seed)
[35]. Das ermittelte Token wird danach an den Prompt angefiigt und dem Modell als neue
vorherige Ausgabe tibergeben [4, 41]. Dies wird so lange wiederholt, bis das Modell ein
End-Of-Text-Token auswéhlt [4].
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Die GPT-40- und GPT-40-mini-Modelle, welche in dieser Bachelorarbeit genutzt werden,
ermoglichen die Verwendung von maximal 128.000 Tokens, wobei das Modell selbst die
Ausgabe von maximal 16.384 Tokens erlaubt [34].

2.2.2. Verwendungsarten

Es gibt unterschiedliche Arten wie man PLMs nutzen kann [4, 8]. In dieser Bachelorarbeit
wird zwischen Feinanpassung und Prompting unterschieden.

2.2.2.1. Feinanpassung

Bei der Feinanpassung (engl.: fine-tuning) wird ein PLM nicht direkt genutzt, sondern zuerst
mit aufgaben- und/oder doméanenspezifischen Daten an eine spezielle Zielaufgabe angepasst
[8, 38]. Danach wird das angepasste Modell zur Losung dieser Aufgabe verwendet [8, 25,
38].

Es gibt verschiedene Feinanpassungsansitze, welche unterschiedlich funktionieren [8, 22,
23, 27, 38]. Bei aktuell vorhandenen Ansatzen werden der Modellaufbau angepasst [22, 25],
die Modellparameter aktualisiert [8, 25, 38] und/oder die Eingabedaten generisch verandert
[23].

Um Feinanpassung durchfiihren zu konnen, wird ein Modell benétigt, welches auf einem
PLM basiert [8, 24, 25]. In dieser Bachelorarbeit ist das Modell BertForSequenceClassificati-
on aus der Python-Bibliothek transformers relevant. Der Datenfluss dieses Modells ist in
Abbildung 2.1 dargestellt. Es eignet sich fiir Feinanpassung von Textklassifikation [24, 25].
An das Modell tibergibt man die Text-Tokens (Ermittelten Tokens eines Textes), welche
mit einem CLS-Token am Anfang und einem SEP-Token und moglichen PAD-Tokens am
Ende ergianzt werden [25]. Zuerst wird ein beliebiges BERT-Modell [8] durchlaufen [24, 25].
Anschlieflend wird die Ausgabe des CLS-Tokens des BERT-Modells [8] mit einer dichten
neuronalen Schicht gebtindelt (engl.: pooling) [25]. Die gebiindelte Ausgabe wird danach
mit einer Klassifikationsschicht auf einen n-dimensionalen Vektor reduziert und mit An-
wendung der Softmax-Funktion in n-Klassenwahrscheinlichkeiten umgewandelt [25]. Die
Klasse mit der hochsten Wahrscheinlichkeit ist das Klassifikationsergebnis [25].

Fir die eigentliche Feinanpassung miissen neben der Modellwahl verschiedene andere
Festlegungen getroffen werden [24, 25]. Eine bendtigte Festlegung ist die Verlustfunktion
[25]. Diese wird fiir die Berechnung und Minimierung des Trainingsfehlers benutzt. Bei Bert-
ForSequenceClassification kommt standardmaflig der Cross-Entropy-Loss als Verlustfunktion
fiir bindre Klassifikation zum Einsatz:

N

L=-% ; [yi log(g:) + (1 —y;) log(1 — )],

wobei N die Anzahl annotierter Trainingsdaten, y € {0, 1} das wahre Label und §j € (0,1)
die vorhergesagte Wahrscheinlichkeit darstellt [24, 25].
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Abbildung 2.1.: Datenfluss des BertForSequenceClassification-Modells aus der Python-Bibliothek
transformers - Modell fiir Textklassifikation - n entspricht der Klassenanzahl

Zusatzlich sollten die wichtigsten Hyperparameter festgelegt werden [6, 25]. Dies sind
Parameter, welche den Trainingsprozess beeinflussen, aber nicht zu den eigentlichen Mo-
dellparametern gehoren. Wichtige Hyperparameter sind folgende:

« Anzahl an Trainingsepochen (engl.: number of training epochs): Dieser Parameter gibt

an, wie oft der Trainingsdatensatz wahrend des Trainings durchlaufen wird. Wenn
dieser Parameter zu niedrig gew#hlt wird, dann kann es zu Unteranpassung (engl.:
underfitting) kommen, wobei das Modell die Daten nicht gut genug lernt. Wenn dieser
Parameter zu hoch gewihlt wird, dann kann es zu Uberanpassung (engl.: overfitting)
kommen, wobei sich das Modell zu stark an die Trainingsdaten anpasst und deswegen
bei ungesehenen Daten verschatzt.

Lernrate (engl.: learning rate): Dieser Parameter legt fest, wie grof3 die Verdnderungs-
schritte der Modellparameter in jedem Trainingsschritt sind. Wenn dieser Parameter
zu niedrig gewahlt wird, dann kann das Training sehr lange dauern. Wenn dieser Para-
meter zu grofy gewahlt wird, dann kann die Modellkonfiguration mit dem minimalen
Verlust in jedem Schritt Gibersprungen werden, wodurch der Verlust moglicherweise
nicht reduziert wird.

Gewichtsverfall (engl.: weight decay): Dieser Parameter schrankt die Modellkapazitat
ein, indem grof3e Modellparameter zu einem hoheren Verlust fithren. Wenn dieser
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Parameter zu niedrig gewahlt wird, dann kann es zu Uberanpassung kommen. Wenn
dieser Parameter zu grof3 gewéhlt wird, dann kann es zu Unteranpassung kommen.

« Anzahl an Trainingsdaten pro Trainingsschritt pro Gerét (engl.: per device train batch
size): Dieser Parameter gibt an, wie viele Trainingsdaten in jedem Trainingsschritt auf
jedem Gerét (Prozessor oder Grafikkarte) genutzt werden. Wenn dieser Parameter zu
niedrig gewahlt wird, dann kénnen die Modellparameterveranderungen rauschbehaf-
tet sein, wodurch das Training langer dauern kann. Wenn dieser Parameter zu grof3
gewahlt wird, dann kann das Training moglicherweise nicht ausgefithrt werden, da
der vorhandene Grafikspeicher eventuell tiberschritten wird.

Die Festlegung der Hyperparameter findet mittels der Hyperparameteroptimierung statt
[6]. Fur diese legt man eine Optimierungsstrategie fest, welche dazu genutzt wird, die
Hyperparameter zu ermitteln, welche die besten Ergebnisse liefern [6]. Eine relevante Op-
timierungsstrategie ist Grid Search, wobei man eine Menge Hyperparameter und jeweils
zugehorige Werte, welche tiberpriift werden sollen, nutzt [6]. Bei Grid Search werden die
optimalen Hyperparameter ermittelt, indem alle moglichen Kombinationen aus den zuge-
horigen Werten getestet und die Hyperparameterkombination mit den besten Ergebnissen
ausgewihlt werden [6].

Zusatzlich kann eine Stichprobenstrategie (engl.: sampling strategy) verwendet werden [25].
In dieser Bachelorarbeit ist die Strategie Dynamic Random Negative Sampling relevant, da
ein Ungleichgewicht zwischen den Klassen vorliegt und dieses mit dieser Strategie ausgegli-
chen werden kann [25]. Auflerdem fiihrt diese Strategie dazu, dass die Trainingsdauer pro
Trainingsepoche stark reduziert wird, da beim Dynamic Random Negative Sampling in jeder
Trainingsepoche nicht alle Daten benutzt werden, sondern alle Daten aus der kleineren
Klasse und eine gleiche Anzahl zufallig ausgewéhlte Daten aus der grofieren Klasse [25].

2.2.2.2. Prompting

Beim Prompting wird ein Decoder-PLM ohne weitere Anpassung des Modells verwendet,
indem man die zu 16sende Aufgabe in einen Prompt einbaut, an das PLM iibergibt und einen
Antworttext vom Modell erhilt [11, 40].

Es existieren verschiedene Prompting-Techniken, welche teilweise miteinander kombiniert
werden konnen [40]. Bei der Chain-of-Thought-Technik wird das Decoder-Modell beispiels-
weise dazu aufgefordert, seinen Denkprozess auszugeben, bevor es eine Antwort auf die
Aufgabenstellung liefert [11, 21, 40]. Eine andere Technik heif3t few-shot bzw. multi-shot
Prompting [4]. Dabei enthélt der Prompt zuséatzlich zur Aufgabenstellung auch Beispiel-
lésungen der Aufgabe [4]. Im Gegensatz dazu wird beim zero-shot Prompting nur die
Aufgabenstellung iibergeben [4].
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2.3. Experimentelle Grundlagen

Fir das Verstiandnis der Durchfithrung und Auswertung der Experimente dieser Bache-
lorarbeit wird zusatzliches Wissen tiber die genutzten Datenaufteilungsstrategien und
verwendeten Evaluationsmetriken benotigt.

2.3.1. Datenaufteilungsstrategien

Einige Experimente in dieser Bachelorarbeit bendtigen eine Aufteilung der Daten, da teilwei-
se sowohl TBD als auch Testdaten benéotigt werden. Diese Mengen miissen unterschiedliche
Daten enthalten [6]. Grund dafiir ist, dass die Ergebnisse sonst verfalscht werden, da ein
PLM bei gesehenen Daten deutlich bessere Ergebnisse liefert als bei unbekannten Daten.

Es gibt verschiedene Strategien fiir die Datenaufteilung (DA) [6]. Einerseits kann jedes
Projekt/jeder Datensatz einzeln betrachtet und aufgeteilt werden [6]. Hierbei muss zwi-
schen stratifizierter und nicht-stratifizierter Aufteilung unterschieden werden [6]. Bei der
stratifizierten DA sind die Klassenverhéltnisse in allen Aufteilungsmengen gleich und bei
der nicht-stratifizierten DA miissen diese nicht zwangsweise gleich sein [6]. Andererseits be-
steht die Moglichkeit, dass die Projekte entweder durchmischt oder einzeln als Aufteilungen
betrachtet werden [6].

Dartiber hinaus kann bei der DA eine Kreuzvalidierung durchgefithrt werden [6]. Anstatt
eine feste Test- und TBD-Menge zu verwenden, wird das Experiment mehrfach wieder-
holt, sodass jede Teilmenge der Daten einmal als Testmenge dient [6]. Bei Verwendung
der Kreuzvalidierung wird die Performance ermittelt, indem der Durchschnitt von jeder
einzelnen Evaluationsmetrik gebildet wird [6].

2.3.2. Evaluationsmetriken

Fiir die Auswertung und Bewertung der Experimente werden verschiedene Metriken ver-
wendet. Da es sich bei der TLR um eine binire Klassifikationsaufgabe handelt, konnen
folgende Metriken direkt nach den Experimenten ermittelt werden:

« Richtig positiv (engl.: true positive, TP): Anzahl der Daten, welche vom TLR-Ansatz
als TL klassifiziert wurden und in Wirklichkeit eine TL haben.

« Falsch positiv (engl.: false positive, FP): Anzahl der Daten, welche vom TLR-Ansatz als
TL klassifiziert wurden und in Wirklichkeit keine TL haben.

« Richtig negativ (engl.: true negative, TN): Anzahl der Daten, welche vom TLR-Ansatz
als Nicht-TL klassifiziert wurden und in Wirklichkeit keine TL haben.

« Falsch negativ (engl.: false negative, FN): Anzahl der Daten, welche vom TLR-Ansatz
als Nicht-TL klassifiziert wurden und in Wirklichkeit eine TL haben.
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Die zuvor angegebenen Metriken werden nicht fiir den direkten Vergleich zwischen TLR-
Ansitzen geniitzt, da diese nur absolute und nicht relative Ergebnisse darstellen. Aus diesem
Grund werden aus den oben angegebenen Metriken folgende Metriken abgeleitet, welche
oft fiir die Bewertung von TLR-Anséitzen in der Forschung verwendet werden [11, 21, 24,
25]:

TP
TP+FP

« Préazision (engl.: precision, P): P =
Die Prazision gibt relativ an, wie viele als TL klassifizierte Daten in Wirklichkeit
TL haben. Diese Metrik ist wichtig, da der Entwickler bei einer niedrigen Prazision
das Vertrauen in die Klassifikation verliert und als TL klassifizierte Daten manuell

iiberpriifen muss.

« Ausbeute (engl.: recall, R): R = TPE:N

Die Ausbeute gibt relativ an, wie viele der Daten, welche in Wirklichkeit eine TL haben,
auch vom TLR-Ansatz erkannt wurden. Diese Metrik ist wichtig, da der Entwickler
bei einer niedrigen Ausbeute moglicherweise wichtige Zusammenhénge iibersieht, da
eventuell wichtige TLs nicht vom TLR-Ansatz erkannt wurden.

+ Fy-Metrik: Fy = (1+ ) - 722

Die Fg-Metrik kombiniert die Prizision und die Ausbeute. Mit  wird angegebenen, wie
wichtig die Ausbeute im Vergleich zur Prazision ist. Wenn 8 = 1, ist die Ausbeute gleich
gewichtet wie die Prazision und in diesem Fall handelt es sich um den harmonischen
Durchschnitt der beiden Werte. Diese Metrik ist wichtig, da sowohl die Prézision als
auch die Ausbeute wichtig fir die TLR ist [21]. In dieser Arbeit sind sowohl die F;- als
auch die F,-Werte relevant, da diese beiden Fs-Werte meistens fiir die Bewertung von
TLR-Ansatzen in der Forschung verwendet werden [9, 11, 33].
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In diesem Kapitel werden wissenschaftliche Veroffentlichungen vorgestellt, die im Zu-
sammenhang mit dieser Bachelorarbeit stehen. Ziel ist es, den aktuellen Forschungsstand
vorzustellen, meine Bachelorarbeit von dhnlichen Arbeiten abzugrenzen und dadurch die
aktuell bestehende Forschungsliicke aufzuzeigen.

3.1. Wiederherstellung von Nachverfolgbarkeitsverbindungen

Fiir die TLR gibt es verschiedenste Ansatze, welche mit der Zeit von der Forschung immer
weiter entwickelt wurden.

3.1.1. Information Retrieval

Anfanglich lag der Schwerpunkt der TLR-Forschung auf Information Retrieval (IR), wobei
versucht wird, TLs anhand textueller Ahnlichkeiten zu erkennen [16]. Dies zeigt sich exem-
plarisch an Veroffentlichungen wie Antoniol u. a. [2] und Hayes, Dekhtyar und Sundaram
[17].

Mit der Zeit wurden diese Ansitze immer weiter verbessert und/oder erweitert. Zum Beispiel
erstellten Moran u.a. [31] Comet. Dies ist ein TLR-Ansatz, welcher ein bayesianisches
hierarchisches Modell in Kombination mit verschiedenen IR-Ansétzen verwendet. Es zeigte
sich, dass die Leistung von Comet, verglichen mit einzelnen IR-Ansétzen, besser ist.

Ein anderer IR-Ansatz wurde von Hey u. a. [20] erstellt. Sie entwarfen den FTLR-Ansatz,
welcher fiir die TLR von Anforderungen zu Quelltext entwickelt und getestet wurde. Bei
diesem Ansatz teilten die Autoren die Artefakte in Teile (Satze/Methoden) auf, ermittelten
Vektoren mittels Worteinbettungen und bestimmten damit die Ahnlichkeit der Artefaktteile.
Fir die Bestimmung der Ahnlichkeit wurde als Funktion nicht die haufig verwendete
Kosinus-Ahnlichkeit, sondern die Word Mover’s Distance genutzt. Danach wurde fiir jede
Methode der dhnlichste Satz aus jeder Anforderung ermittelt, mit einem unteren Grenzwert
gefiltert und TL-Kandidaten pro Klasse durch Mehrheitsentscheid aggregiert. Diese TL-
Kandidaten wurden anschliefend mit einem unteren Ahnlichkeitsgrenzwert gefiltert. Sie
zeigten, das FTLR bessere Ergebnisse erzielt, als vorhandene Ansitze, welche ebenfalls
keine Trainingsdaten benoétigen. Zusatzlich zeigte Hey [18], dass sowohl die genutzte
Aufteilung und Aggregation als auch die verwendete Ahnlichkeitsfunktion die Leistung
signifikant verbesserten. Spater konnte der FTLR-Ansatz noch von Hey, Keim und Corallo
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[19] verbessert werden, indem die Anforderungen unter anderem mit einem feinangepassten
PLM vorgefiltert wurden.

Ein weiterer IR-Ansatz namens TRIAD wurde von Gao u. a. [12] ebenfalls fiir die TLR von
Anforderungen zu Quelltext entworfen. Die Autoren verwendeten LLRs als Zwischenar-
tefakte. Aus den Quell-, Zwischen- und Zielartefakten wurden Wortpaare extrahiert und
in die Quell- und Zielartefakte eingesetzt. Zuséatzlich nutzten sie transitive TLs (indirekte
Verbindungen tiber Zwischenartefakte) fiir die Ermittlung von den TLs. Auch Gao u. a. [12]
zeigten eine Verbesserung der Performance verglichen mit anderen IR-Ansétzen.

3.1.2. Klassisches maschinelles Lernen

Neben dem IR wurden auch maschinelles Lernen (engl.: machine learning, ML) fiir die TLR
verwendet [16]. Im groflen Unterschied zu den IR-Ansétzen bendtigen diese annotierte Daten
zum Trainieren. Guo, Cheng und Cleland-Huang [15] trainierten und verwendeten bei-
spielsweise rekurrente neuronale Netze fiir die TLR. Dabei lieferte dieser Ansatz signifikant
bessere Ergebnisse als vorhandene IR-Anséatze, welche zu der Zeit fithrend waren.

Ein anderer ML-Ansatz namens TRAIL wurde von Mills, Escobar-Avila und Haiduc [29]
entworfen. Die Autoren ermittelten fiir jeden moglichen TL unterschiedliche Merkmale,
womit verschiedene Modelle trainiert wurden. Dabei zeigte sich, dass das Random Forest-
Modell fiir diesen Ansatz am besten geeignet ist und das verschiedene IR-Ansétze in der
Leistung deutlich tibertroffen werden konnten. Spater verbesserten Mills u. a. [30] diesen
Ansatz, indem sie durch aktives Lernen (engl.: active learning) die Anzahl der benétigten
Trainingsdaten verringerten.

In dieser Bachelorarbeit wird kein IR- und ML-Ansatz in den Vergleich mit eingebunden, da
sich zeigte, dass PLM-basierte Ansétze meist bessere Ergebnisse liefern [1, 11].

3.1.3. Feinanpassung

Eine Gruppe von PLM-basierten Ansitzen, welche annotierte Daten zum Trainieren benoti-
gen, verwenden Feinanpassung.

Lin u.a. [25] veroffentlichten eine Publikation dazu. Sie entwarfen und untersuchten
das T-BERT-Framework mit drei Feinanpassungsansatzen, wobei die Quellartefakte Feh-
lerberichte und Feature-Anfragen (engl.: issues, Issues) und die Zielartefakte Quelltext-
Anderungen (engl.: commits, Commits) waren. Dabei kam heraus, dass die evaluierte Single-
BERT-Variante die besten Ergebnisse liefert und die Siamese-BERT-Variante das beste
Leistung/Kosten-Verhaltnis hat.

Feinanpassungsansatze wurden ebenfalls von Lin u. a. [24] fiir ihre wissenschaftliche Verof-
fentlichung untersucht. Es wurden fiinf Ansatze fiir die TLR von HLRs zu LLRs getestet,
welche unterschiedliche Transferlernansétze fiir ein Zwischentraining nutzen. Lin u. a. [24]
fanden dabei heraus, dass das Task-CLS-Modell, welches auf dem Single-BERT-Modell
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von Lin u. a. [25] aufbaut, die besten Ergebnisse liefert. Aulerdem ermittelten sie, dass das
BERT-Modell [8] als Grundlage bei der Vervollstindigung von TLs am besten funktioniert.

Auch Majidzadeh, Ashtiani und Zakeri-Nasrabadi [28] verwendeten Feinanpassung fiir die
TLR. Sie kombinierten Feinanpassung eines Modells mit verschiedenen Datenaugmentie-
rungstechniken und testeten es auf der TLR von Dokumentationen zu Methoden, von Issues
zu Commits und von Issues zu Methoden. Sie fanden heraus, dass ihr Ansatz besser ist als
verfligbare Ansétze, wie z.B. auch T-BERT von Lin u. a. [25].

Sowohl Deng u. a. [7] als auch Wang u. a. [43] verwendeten einen anderen Ansatz fir die
TLR von Issues zu Commits. Die Autoren der beiden Publikationen l6sten die TLR mit einer
Lickentextaufgabe und bauten die Textliicke in verschiedene Prompts ein. Dazu testeten sie
eine Trainingsstrategie, bei welcher leichtes Rauschen in die Eingabe mit einflief3t. Es zeigte
sich, dass die Trainingsstrategie zu besseren Ergebnissen fiithrt. Zugleich ermittelten sie,
dass die Mittelung der Ergebnisse der einzelnen Prompts die beste Leistung erbringt. Beim
Vergleich mit anderen Ansétzen zeigte dieser Ansatz signifikant bessere Ergebnisse.

Nur eine Publikation untersuchte bis jetzt die TLR zwischen Anforderungen. Dazu verglichen
alle zuvor genannten Veroffentlichungen ihre Ansatze auch nicht mit Prompting.

3.1.4. Prompting

Prompting ist ein anderer Ansatz, welcher auf PLMs basiert. Auch Prompting wurde wie
Feinanpassung schon mehrfach von der Forschungsgemeinschaft fiir die TLR verwendet
und untersucht.

Rodriguez, Dearstyne und Cleland-Huang [40] testeten verschiedene Prompting-Techniken
fir die TLR von HLRs zu LLRs, von Anforderungen zu Klassen und von LLRs zu Klassen
systematisch. Betrachtet wurden unterschiedliche sortierungs- und klassifikations-basierte
Ansatze. Dabei stellte sich heraus, dass klassifikations-basierte Ansatze besser funktionieren
als sortierungs-basierte Ansatze. Bei den klassifikations-basierten Ansétzen zeigte sich, dass
die Chain-of-Thought-Technik leicht bessere Ergebnisse liefert als die anderen untersuchten
Techniken.

Fuchf u. a. [11] untersuchten ebenfalls Prompting und erstellten das LiSSA-Framework. Sie
erweiterten Prompting mit Retrieval-Augmented Generation (RAG) und iiberpriiften diesen
Ansatz auf der TLR von Anforderungen zu Quelltext, von Dokumentationen zu Quelltext und
von Dokumentationen zu Modellen. Gepriift wurden nur klassifikations-basierte Prompting-
Ansatze, welche aus den Ergebnissen von Rodriguez, Dearstyne und Cleland-Huang [40]
abgeleitet wurden. Bei der Untersuchung wurde ersichtlich, dass hier auch die Chain-of-
Thought-Technik bessere Ergebnisse liefert und dass ihr Ansatz im Durchschnitt besser ist
als andere Ansétze, welche zu der Zeit fithrend waren. Hey u. a. [21] arbeiteten mit den
Ergebnissen von Fuchf3 u. a. [11] weiter. Der Ansatz von Fuchf u. a. [11] wurde in dieser
Veroffentlichung fiir die Wiederherstellung von TLs zwischen HLRs und LLRs getestet.
Auch hier zeigte sich, dass die Chain-of-Thought-Technik zu besseren Ergebnissen fithrt
und dass der Ansatz besser ist als andere Ansatze, welche zu der Zeit fithrend waren.
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Niu u. a. [33] nutzten einen anderen RAG-Ansatz in Kombination mit Prompting wie Fuchf}
u.a. [11] und Hey u. a. [21]. Bei dieser Untersuchung wurde die Wiederherstellung und
Validierung von TLs zwischen HLRs und LLRs von Kraftfahrzeugsystemen betrachtet. Der
Fokus lag eher auf der Validierung als auf der Wiederherstellung, weswegen keine grofie
Auswertung von der TLR-Performance stattfand.

Auch Fuchf} u. a. [10] verwendeten den Ansatz von Fuchfl u.a. [11] und Hey u. a. [21] als
Grundlage und ersetzten den bisherigen Retrieval-Schritt durch ein mehrstufiges Filter-
verfahren, bei dem Prompting auf kleinen Decoder-PLMs durchgefiihrt wird. Sie testeten
ihren Ansatz fiir die TLR von HLRs zu LLRs. Sie zeigten, dass die verkettete Filterung am
besten funktioniert. Mit dieser Filterart konnten sie aktuelle IR-Ansitze in der Performance
schlagen, aber nicht den urspriinglichen Ansatz von Fuchf u.a. [11] und Hey u. a. [21].

In dieser Bachelorarbeit fithre ich im Unterschied zu Fuchf u. a. [10, 11], Hey u. a. [21], Niu
u.a. [33] und Rodriguez, Dearstyne und Cleland-Huang [40] einen Vergleich mit einem
Feinanpassungsansatz durch.

3.1.5. Vergleich von Feinanpassung und Prompting

Im Kontrast zu den vorherigen Publikationen evaluierten und verglichen zwei Veréffentli-
chungen sowohl Feinanpassung als auch Prompting fiir die TLR.

Bei der Arbeit von Etezadi u. a. [9] wurde Kashif und RICE fiir die TLR von Anforderungen
zu gesetzlichen Vorschriften untersucht. Kashif ist ein Feinanpassungsansatz, welcher ein
modifiziertes BERT Modell [8] verwendet, und RICE ist ein few-shot Prompting-Ansatz. Die
Auswertung zeigte, dass RICE generell deutlich bessere Ergebnisse liefert als Kashif.

Auch Ge u. a. [13] verglichen die beiden Ansatzarten miteinander, wobei aber der Haupt-
fokus auf der Feinanpassung lag. Sie fithrten die TLR von HLRs zu LLRs auf zehn Daten-
satzen durch, wobei vier Datensitze unterschiedlich aus den anderen sechs Datensitzen
zusammengesetzt wurden. Ge u. a. [13] variierten mit dem eingesetzten Modell, der ver-
wendeten Feinanpassungsstrategie und dem genutzten Prompt. Auflerdem verwendeten sie
verschiedene Zusammenfassungs- und Datenaugmentierungstechniken. Beim Vergleich
zwischen Prompting und Feinanpassung variierten die Autoren aber nicht mit der Anzahl
annotierter Daten innerhalb der Datensatze, sondern verwendeten stattdessen eine fes-
te Datenaufteilung. Bei ihnen zeigte sich, dass die Verwendung von Zusammenfassungs-
und Datenaugmentierungstechniken zu besseren Ergebnissen fithrt. Dazu ermittelten sie,
dass der Feinanpassungsansatz Prompt-Tuning [23] in Kombination mit dem genutzten
7B-LLaMA-Modell der beste Ansatz ist. Anders als bei Etezadi u. a. [9] war bei Ge u. a. [13]
der Feinanpassungsansatz also besser als Prompting.

In Abgrenzung zu der Arbeit von Etezadi u.a. [9] werden in dieser Bachelorarbeit die
TLR von HLRs zu LLRs und zero-shot Prompting betrachtet. Im Gegensatz zu Ge u. a. [13]
wird auch few-shot/ multi-shot Prompting mit in den Vergleich einbezogen. Des Weiteren
grenzt sich diese Bachelorarbeit von beiden Arbeiten ab, indem systematisch Prompting
und Feinanpassung mit unterschiedlicher Anzahl annotierter Daten verglichen wird.
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3.2. Vergleich von Feinanpassung und Prompting

3.2. Vergleich von Feinanpassung und Prompting

Feinanpassung und Prompting wurden nicht nur fiir die TLR untersucht, sondern auch fiir
eine Vielzahl anderer Aufgaben.

So verglichen beispielsweise Chen, Yi und Varr6 [5] beide Ansitze bei der Erstellung von
Taxonomien auf zwei Datensétzen unterschiedlicher Grofle. Ein Datensatz ist domanenun-
abhéngig und umfasst Taxonomien mit ,,ist-ein“-Beziehungen (WordNet) und der andere
Datensatz bildet hierarchische Beziehungen zwischen Informatik-Konzepten ab (ACM CCS).
Prompting lieferte bei dem kleineren Datensatz (WordNet) deutlich bessere Ergebnisse, weil
dort weniger Trainingsdaten verfiigbar waren. Bei dem grofleren Datensatz (ACM CCS)
wurden hingegen gleich gute Ergebnisse wie Feinanpassung erzielt.

Auch bei Pecher, Srba und Bielikova [36] wurde ein dhnlicher Zusammenhang sichtbar,
diesmal bei verschiedenen Textklassifikationsaufgaben auf acht Datensatzen, die sowohl
binire Klassifikationen (z.B. Erkennung grammatikalischer Korrektheit von Satzen) als auch
Mehrklassenklassifikationen (z.B. Klassifikation von Fragearten) umfassten. Ihr Vergleich
ergab, dass Feinanpassung ab durchschnittlich 30 annotierten Daten bessere Ergebnisse
erzielt als zero-shot Prompting und ab durchschnittlich 100 annotierten Daten auch besser
wird als few-shot Prompting. Dazu stellten Pecher, Srba und Bielikova [36] fest, dass die
Ergebnisse stark vom verwendeten Datensatz abhéngen.

Ein weiterer Vergleich wurde von Walsh u. a. [42] durchfiihrt und veroffentlicht. Sie unter-
suchten Feinanpassung und few-shot Prompting im Kontext der Bewertung von Kurzant-
worten. Bei ihnen zeigte sich eine deutliche Verbesserung von Feinanpassung gegeniiber
few-shot Prompting schon ab ca. 150 Trainingsdaten beim GPT-40-mini-Modell.

Insgesamt verdeutlichen die Ergebnisse, dass Feinanpassung mit wachsender Anzahl anno-
tierter Daten besser wird und ab einer gewissen Anzahl auch besser wird als Prompting.

3.3. Zusammenfassung

Die wichtigsten verwandten Arbeiten sind zusammengefasst in Tabelle 3.1 dargestellt.
Hierbei handelt es sich um Veroffentlichungen, welche Feinanpassung und/oder Prompting
fiir die TLR nutzten. Es gibt jeweils fiinf Veroffentlichungen, welche nur Feinanpassung oder
nur Prompting untersuchten. Nur zwei Publikationen untersuchten sowohl Feinanpassung
als auch Prompting. Feinanpassung wurde bei zwei verwandten Arbeiten fiir die TLR von
HLRs zu LLRs, welche in dieser Arbeit untersucht wird, evaluiert. Prompting evaluierten
fiinf verwandte Publikationen fiir die TLR von HLRs zu LLRs.
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3. Verwandte Arbeiten

Veroéffentlichung TL-Typen Feinanpassung Prompting
Lin u. a. [25] Issue — Commit v
Lin u. a. [24] HLR — LLR V4
Majidzadeh, Ashtiani Dokumentation — Methode v
und Zakeri-Nasrabadi Issue — Commit
[28] Issue — Methode
Deng u. a. [7] Issue — Commit v
Wang u. a. [43] Issue — Commit v
Rodriguez, Dearstyne HLR — LLR v
und Cleland-Huang Anforderung — Klasse
[40] LLR — Klasse
FuchfB u.a. [11] Anforderung — Quelltext v
Dokumentation — Quelltext
Dokumentation— Modell
Hey u.a. [21] HLR — LLR v
Niu u. a. [33] HLR — LLR v
Fuchf3 u.a. [10] HLR — LLR v
Etezadi u. a. [9] Anforderung — gesetzliche Vorschrift v v
Ge u.a. [13] HLR — LLR v v

Tabelle 3.1.: Ubersicht der wichtigsten verwandten Arbeiten
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4. Analyse und Implementierung der
TLR-Ansatze

Das zentrale Ziel dieser Bachelorarbeit besteht darin, zu ermitteln, unter welchen Bedin-
gungen man eher Feinanpassung oder eher Prompting fiir die TLR von HLRs zu LLRs
verwenden sollte. Um dieses Ziel erreichen zu kénnen, werden fiir den Vergleich zuerst
Prompting- und Feinanpassungs-TLR-Ansdtze benétigt. Von den in Kapitel 3 vorgestellten
TLR-Ansatzen aus der Forschung fiir Feinanpassung und Prompting kénnen aber nicht
alle mit in den Vergleich einbezogen werden, da dies einerseits den Rahmen dieser Arbeit
tiberschreiten wiirde und da anderseits nicht alle gefundenen Ansétze fiir die TLR von HLRs
zu LLRs eingesetzt werden konnen.

Aus diesem Grund wird in diesem Kapitel eine Analyse der vorhandenen Ansétze und
eine begriindete Auswahl der TLR-Ansétze vorgenommen. Dafiir werden zunachst die
Kriterien, welche fiir die Ansatzwahl genutzt werden, aufgezeigt. Danach wird fiir jeweils
Feinanpassung und Prompting begriindet, welche entwickelten und untersuchten TLR-
Ansitze mit in den Vergleich einbezogen werden. Zusétzlich wird in diesem Kapitel die
Implementierung der gewahlten Ansatze dargestellt, da einige begriindete Veranderungen
bei der Implementierung vorgenommen werden miissen.

4.1. Analyse

Bei der Analyse und Auswahl der TLR-Ansétze liegt der Schwerpunkt darauf, dass sie fiir
die TLR von HLRs zu LLRs geeignet sind. Dafiir wird iiberpriift, ob die Ansatze bereits fiir
die TLR von HLRs zu LLRs evaluiert wurden. Wenn dies nicht der Fall ist, dann werden
diese Ansitze fir den Vergleich nicht weiter in Betracht gezogen. Der Grund hierfiir liegt
darin, dass der Fokus dieser Bachelorarbeit auf der Evaluation bestehender Ansatze liegt
und nicht auf der Anpassung von TLR-Ansétzen auf andere Artefakttypen. Wenn nach
dieser Auswahl noch mehrere Ansétze iibrig bleiben, dann wird die weitere Wahl anhand
von anderen Faktoren getroffen, wie beispielsweise der Performance des Ansatzes oder wie
stark der Fokus in der Verdffentlichung auf die TLR gelegt wurde.
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4. Analyse und Implementierung der TLR-Ansdtze

4.1.1. Feinanpassung

Bei der Feinanpassung stehen die Ansétze von Deng u. a. [7], Etezadi u. a. [9], Ge u.a. [13],
Lin u. a. [24, 25], Majidzadeh, Ashtiani und Zakeri-Nasrabadi [28] und Wang u. a. [43] zur
Verfigung.

Von diesen wurden als einziges die Ansitze von Ge u.a. [13] und Lin u. a. [24] fir die TLR
von HLRs zu LLRs evaluiert. Dabei werden die Ansétze von Ge u. a. [13] in dieser Arbeit
nicht weiter beriicksichtigt, da sie leichtgewichtige Feinanpassungsmethoden wie LoRa
[22], Prompt-Tuning [23] oder P-Tuning-v2 [27] verwenden und die Nutzung von mehreren
Feinanpassungsansétzen den Rahmen der Arbeit iiberschreiten wiirde.

Die funf verschiedenen TLR-Ansétze von Lin u. a. [24] nutzen alle Feinanpassung, bei der
alle Modellparameter aktualisiert werden. Da die Evaluation von Lin u. a. [24] sowohl auf
dieselbe Art und Weise als auch auf den gleichen Datenséatzen/Projekten fiir alle Ansatze
durchgefithrt wurde, wird der Ansatz anhand der Performance ausgewahlt. Der Task-
CLS-Ansatz brachte die beste Performance, weswegen dieser in abgewandelter Form als
Feinanpassungsansatz (FA) verwendet wird.

4.1.2. Prompting

Prompting-Ansatze wurden von Etezadi u. a. [9], Fuchf u. a. [10, 11], Ge u.a. [13], Hey u. a.
[21], Niu u. a. [33] und Rodriguez, Dearstyne und Cleland-Huang [40] entwickelt und/oder
evaluiert. Im Gegensatz zur Feinanpassung gibt es beim Prompting mehrere Ansitze, die
dieselbe TLR-Aufgabe evaluierten, die in dieser Bachelorarbeit untersucht wird. Diese
Evaluationen wurden von Fuchf} u. a. [10], Ge u. a. [13], Hey u. a. [21], Niu u. a. [33] und
Rodriguez, Dearstyne und Cleland-Huang [40] durchgefiihrt.

Eine weitere Ansatzwahl nach der Performance ist bei den meisten dieser Verdffentlichun-
gen nicht sinnvoll, da haufig verschiedene Datensatze genutzt wurden und/oder nicht die
gleichen Evaluationsmetriken vorliegen, weswegen die Ansiatze hauptsachlich nach anderen
Faktoren herausgefiltert werden. Die Ansétze von Rodriguez, Dearstyne und Cleland-Huang
[40] werden nicht mit in den Vergleich einbezogen, da bereits neuere Ansétze von beispiels-
weise Fuchf u.a. [10], Ge u.a. [13] und Hey u.a. [21] entwickelt und evaluiert wurden,
welche auf den Ergebnissen von Rodriguez, Dearstyne und Cleland-Huang [40] aufbauten.
Auch der Ansatz von Niu u. a. [33] wird ebenfalls in dieser Arbeit nicht genutzt, da einerseits
der Fokus nicht auf der TLR lag und andererseits dieser Ansatz nur fiir eine spezielle Doméne
(Kraftfahrzeugsysteme) evaluiert wurde. Die Prompting-Ansiatze von Ge u. a. [13] werden
auch nicht mit einbezogen, da sie keine Analyse zur Ermittlung des besten Prompting-
Ansatzes durchfithrten. Dadurch ist nicht bekannt, welcher der beste Prompting-Ansatz
aus der Verdffentlichung ist. Diese Ermittlung kann auch nicht in dieser Bachelorarbeit
durchgefiithrt werden, da die genauen Prompting-Ergebnisse nicht verdffentlicht wurden.
Zusétzlich ist eine Betrachtung aller Prompting-Ansatze von Ge u. a. [13] ist nicht mog-
lich, da dies den Rahmen dieser Arbeit tiberschreiten wiirde. Fuchf u. a. [10] und Hey u. a.
[21] testeten auf den gleichen Datenséatzen und gaben dieselben Evaluationsmetriken an,
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4.2. Implementierung

wodurch die Ansatzwahl bei diesen Veroffentlichungen nach der Performance getroffen
werden kann. Der Ansatz von Hey u. a. [21] brachte die bessere Leistung, weswegen als
Prompting-Ansatz 1 (PA1) der LiSSA-Ansatz verwendet wird, welcher von Hey u. a. [21] fiir
die TLR von HLRs zu LLRs getestet wurde.

Dariiber hinaus wird der Vergleich um einen weiteren Prompting-Ansatz (Prompting-Ansatz
2 (PA2)) erganzt, der ausschlief3lich auf Prompting basiert und keine zusétzlichen Verfahren
wie RAG oder Datenaugmentierung einsetzt. Dadurch werden die Ergebnisse ausschlie3lich
durch die jeweilige Methode bestimmt, was einen direkten Vergleich der Leistungsfahigkeit
von Feinanpassung und Prompting ermdglicht. Dafiir wird eine Abwandlung von dem PA1
verwendet.

In dieser Bachelorarbeit wird zusétzlich few-shot/multi-shot Prompting betrachtet. Der
Grund dafiir ist, dass diese Art von Prompting noch nicht von der Forschungsgemeinschaft
fiir die TLR von HLRs zu LLRs evaluiert wurde und es méglicherweise eine Alternative zu
Feinanpassung ist, da beide Ansatzarten annotierte Daten benétigen. Auflerdem zeigten
Etezadi u. a. [9] in der Vergangenheit, dass few-shot Prompting im Vergleich zur Feinanpas-
sung bessere Ergebnisse liefern kann. Der Ansatz von Etezadi u. a. [9] ist auch der einzige
few-shot/ multi-shot Prompting-TLR-Ansatz aus der Forschung. Dieser fallt aber aus der
Betrachtung raus, da er nicht fiir die TLR von HLRs zu LLRs entwickelt wurde. Deswegen
wird als Prompting-Ansatz 3 (PA3) eine Abwandlung von PA2 genutzt.

4.2. Implementierung

Fiir den Vergleich werden die Ansatze, welche in Abschnitt 4.1 ausgew&hlt werden, teilweise
in einer eigenen Implementierung umgesetzt. Dies ist notwendig, da Teile der Ansétze aus
der Forschung in dieser Bachelorarbeit aus verschiedenen Griinden abgewandelt werden.

4.2.1. Feinanpassungsansatz: BertForSequenceClassification

Dieser Ansatz verwendet das Modell BertForSequenceClassification, welches in Unterunterab-
schnitt 2.2.2.1 bereits vorgestellt wurde. Das Modell wird bei diesem Ansatz mit zwei Klassen
(n = 2) verwendet: Klasse 0 ist die Klasse der Nicht-TLs und Klasse 1 ist die Klasse der TLs.
Als Eingabetext-Tokens in dieses Modell wird die zu iiberpriifende Kombination aus HLR und
LLR tibergeben. Dazu werden die beiden Artefakte zunachst einzeln in Tokens umgewandelt
und dann durch ein SEP-Token getrennt. Nachdem das Modell durchlaufen wurde, wird
die Klasse als Klassifikationsergebnis ausgew4hlt, die die grof3te Klassenwahrscheinlichkeit

hat.

Beim Modell kann man verschiedene Kodierer-PLMs verwenden. Da sich zeigte, dass BERT
bessere Ergebnisse liefert als andere Kodierer wie z.B. RoBERTa [24], wird bei diesem Ansatz
BERT [8] verwendet. Als spezielle BERT-Variante wird bert-large-cased genutzt. Large wird
verwendet, da im Vergleich zu base die Modellkapazitat grof3er ist. Cased wird genutzt, da
das Modell bei dieser Variante zwischen groflen und kleinen Buchstaben unterscheidet.
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4. Analyse und Implementierung der TLR-Ansdtze

Dies ist vermutlich wichtig, da in den vorhandenen Anforderungen der Datensétze viele
grof3geschriebene Abkiirzungen vorkommen.

Beim originalen Ansatz von Lin u. a. [24] wurde vor der Feinanpassung auf dem verwendeten
Modell ein Zwischentraining durchgefiihrt. Da die zwischentrainierten Modelle jedoch
nicht verdffentlicht wurden und eine selbststandige Durchfithrung des Zwischentrainings
den Rahmen der Bachelorarbeit iiberschreiten wurde, wird auf diesen Schritt verzichtet.

Bei der eigentlichen Feinanpassung werden alle Modellparameter aktualisiert. Als Verlust-
funktion kommt der fiir das Modell ibliche Cross-Entropy-Loss zum Einsatz. Zusatzlich
nutzt der originale Ansatz die Stichprobenstrategie Online Negative Sampling. Bei dieser
Strategie sucht man in jedem Trainingsschritt die Nicht-TLs, die am wahrscheinlichsten als
TL klassifiziert werden. Dies erhoht aber die Trainingszeit stark, da wahrend des Trainings
diese Nicht-TLs ermittelt werden miissen. Da in dieser Bachelorarbeit sehr viele verschiede-
ne Modelle trainiert werden, ist eine Verwendung dieser Strategie aus diesem Grund nicht
sinnvoll. Um die Vorteile einer Stichprobenstrategie nicht zu verlieren, wird in dieser Arbeit
die Strategie Dynamic Random Negative Sampling verwendet, welche eine Alternative zum
Online Negative Sampling ist [24].

4.2.2. Prompting-Ansatz 1: zero-shot mit Retrieval-Augmented Generation

Der LiSSA-Ansatz [11] muss fur diese Bachelorarbeit nicht verdndert werden. Bei diesem
Ansatz werden zuerst mogliche Kombinationen aus Quell- und Zielartefakten herausgefil-
tert, indem die Artefakte in Vektoren mit dem text-embedding-3-large Einbettungsmodell
umgewandelt und mit der Kosinus-Ahnlichkeit (%-, wobei QA der Vektor des Quel-
lartefakt und ZA der Vektor des Zielartefakt ist) die vier dhnlichsten Zielartefakte zu jedem
Quellartefakt ermittelt werden. Nur diese ermittelten Kombinationen werden als mogliche
TL-Kandidaten behandelt und dem Prompting unterzogen. Dabei konnen verschiedene
Prompts und Modelle benutzt werden. Der Chain-of-Thougth-Prompt (Prompt 1) in Kombi-
nation mit dem GPT-40-Modell (gpt-40-2024-08-06) lieferte die besten Ergebnisse, weswegen

nur diese Ansatzvariante in den Vergleich mit einbezogen wird.

Prompt 1: zero-shot Prompt

Below are two artifacts from the same software system. Is there a traceability link
between (1) and (2)? Give your reasoning and then answer with ’yes’ or 'no’ enclosed
in <trace> </trace>.

(1) requirement: "'[HLR]"
(2) requirement: "'[LLR]"
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4.2. Implementierung

4.2.3. Prompting-Ansatz 2: zero-shot ohne Retrieval-Augmented Generation

Dieser Ansatz ist eine Abwandlung vom PA1. Bei PA2 wird die Vorfilterung der Kombinatio-
nen aus PA1 weggelassen, sodass alle mogliche Kombinationen aus Quell- und Zielartefakten
aus einem Projekt dem Prompting unterzogen werden. Bei diesem Ansatz wird ebenfalls
Prompt 1 und als Modell GPT-40 (gpt-40-2024-08-06) genutzt.

4.2.4. Prompting-Ansatz 3: few-shot/multi-shot

Dieser Ansatz ist eine Abwandlung von PA2. Im Gegensatz zu PA2 nutzt dieser Ansatz
einen few-shot/ multi-shot Prompt (Prompt 2), welcher aus Prompt 1 abgeleitet wird. Als
Modell wird GPT-40-mini (gpt-40-mini-2024-07-18) verwendet, da GPT-40 zu grof3e Kosten
bei Experimenten verursachen wiirde.

Prompt 2: few-shot/multi-shot Prompt
Below are examples of traceability link decisions between high-level and low-level
requirements from the same software system.

Example 1:

(1) requirement: "'[HLR Beispiel 1]"
(2) requirement: "'[LLR Beispiel 1]"
Traceability link: [yes/no]
[Mogliche weitere Beispiele]

Now consider the following case. Is there a traceability link between (1) and (2)?
Give your reasoning and then answer with ’yes’ or 'no’ enclosed in <trace> </trace>.

(1) requirement: "'[HLR]"
(2) requirement: "'[LLR]"
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5. Szenarienbasierte Experimente und
Auswertung

Fir einen direkten Vergleich von Feinanpassung und Prompting benétigt man neben ge-
eigneten Ansitzen zusitzlich auch eine Untersuchung ihrer Leistungsfahigkeit bei einer
bestimmten Aufgabe. Beim FA, PA2 und PA3 liegen noch keine Ergebnisse vor, da diese
Ansitze eigene Ableitungen/Implementierungen vorhandener Ansétze sind. Aus diesem
Grund werden fiir die Ermittlung der Performance selbst Experimente durchgefiihrt, welche
auf den gleichen Datensétzen/Projekten ausfithrt und mit identischen Evaluationsmetriken
bewertet werden. Die Experimente orientieren sich an verschiedenen Szenarien. Diese
bilden unterschiedliche reale Anwendungssituationen ab, in denen annotierte Projekte und
projekt-interne Daten entweder vorhanden sind oder fehlen. Dadurch kann ein Entwickler
in seinem Anwendungsfall mithilfe dieser Bachelorarbeit den TLR-Ansatz mit der besten
Leistungsfahigkeit auswahlen.

In diesem Kapitel werden zunachst die experimentellen Rahmenbedingungen beschrieben.
Danach werden die einzelnen Szenarien vorgestellt. Wenn fiir die Szenarien neue Experimen-
te durchgefiithrt werden, dann werden der Aufbau und die Ergebnisse dieser Experimente
zusitzlich einzeln beschrieben. Anschliefend werden in den Szenarien die Ergebnisse der
verschiedenen Ansitze vergleichend ausgewertet. Bei der Auswertung wird als wichtigste
Evaluationsmetrik der F;-Wert verwendet, da diese Metrik fur die vollautomatisierte TLR
am wichtigsten ist [21]. Dazu werden die F,-Werte bei der Auswertung mit beschrieben, da
diese fiir die semi-automatisierte TLR eine hohe Relevanz besitzen [10, 21].

5.1. Experimentelle Rahmenbedingungen

Vor den Experimenten miissen verschiedene Rahmenbedingungen festgelegt werden. Hierzu
ziahlen unter anderem die Datensitze, welche zum Trainieren und Testen der Ansatze
verwendet werden, und die Hyperparameter fiir die Feinanpassung. Alle Experimente,
welche durchgefiihrt werden, laufen auf einem Server mit einer NVIDIA Tesla V100S
Grafikkarte mit 32 GB Grafikkartenspeicher. Fiir die DA, das eigentliche Training, das
Testen der Modelle und die Darstellung der Ergebnisse wird die Programmiersprache
Python genutzt. Beim Prompting wird die Temperatur auf null gesetzt. Zusatzlich wird
ein fester Zufallswert verwendet, wodurch die Experimente moglichst deterministisch und
reproduzierbar ablaufen.
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5. Szenarienbasierte Experimente und Auswertung

Datensatz Quelgit;{:iakte. Zlelfﬁ;t?kte' Kombinationen TLs

CM1-NASA 22 53 1166 45
Dronology 99 211 20889 220
GANNT 17 69 1173 68
Modis 19 49 931 41
WARC 63 89 5607 136

Tabelle 5.1.: Anzahl der Artefakte, Kombinationen und TLs in den Datensitzen

5.1.1. Datensatze

In dieser Arbeit werden die Datensatze CM1-NASA, Dronology, GANNT, Modis und WARC,
welche von Hey u. a. [21] genutzt wurden, verwendet. Einerseits sind die TLs von den HLRs
zu den LLRs enthalten, was eine notwendige Voraussetzung ist. Andererseits bieten die Da-
tensatze den Vorteil, dass Hey u. a. [21] auf den Datensétzen die benétigten Experimente fiir
PA1 schon durchfithrten, wodurch weniger Ressourcen fiir diese Bachelorarbeit verbraucht
werden. Zusatzlich decken die Datensitze verschiedene Doméanen ab.

Die Anzahl der Artefakte, der daraus resultierenden Kombinationen und der TLs sind in
Tabelle 5.1 dargestellt. Dronology ist der grofite und Modis der kleinste Datensatz. CM1-
NASA und GANNT haben eine dhnliche Gréf3e wie Modis. WARC hat eine mittlere Grofle
und ist etwa sechsmal so grof3 wie Modis. Auch der prozentuale Anteil an TLs ist bei CM1-
NASA, GANNT und Modis dhnlich. Bei WARC ist dieser Anteil kleiner und bei Dronology
noch geringer.

Wenn die Anzahl der Worter in den Artefakten betrachtet wird, welche in Abbildung 5.1 dar-
gestellt sind, dann wird folgendes sichtbar: Die Worteranzahlen in den Anforderungen sind
in einem ahnlichen Bereich mit Ausnahme der Anzahlen in den LLRs in CM1-NASA, welche
sowohl im Median als auch im Maximum deutlich gréfer sind. Die gleiche Beobachtung
lasst sich auch bei der Anzahl an BERT- und GPT-Tokens machen, welche in Abbildungen
des Anhangs dargestellt sind.

5.1.2. Hyperparameteroptimierung

Fur alle Experimente mit dem FA werden Hyperparameter fir das Training benétigt. Ubli-
cherweise werden diese fur jedes Modell einzeln ermittelt [6]. Die Trainingszeit und der
Ressourcenverbrauch wirden in dieser Bachelorarbeit dabei aber stark erhoht werden, da
fiir diese Bachelorarbeit sehr viele verschiedene Modelle trainiert werden. Dies wiirde den
Rahmen der Bachelorarbeit tiberschreiten. Aus diesem Grund wird die Hyperparameteropti-
mierung nur einmal vor allen Experimenten mit dem FA durchgefiihrt und es werden die
gleichen optimalen Hyperparameter fiir alle Modelle in allen Experimenten genutzt.
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5.1. Experimentelle Rahmenbedingungen
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Abbildung 5.1.: Anzahl der Worter in den Anforderungen der Datensatze

Fiir die Hyperparameteroptimierung wird die Strategie Grid Search verwendet. Als Daten-
aufteilungsstrategie wird mixed-projekt, welche in Abbildung 5.2 dargestellt ist, genutzt. Bei
dieser Strategie werden alle Daten aus allen Projekten zusammengesetzt und durchmischt.
Danach wird die entstandene Menge in k gleich grofie Mengen stratifiziert aufgeteilt. Eine
Menge davon wird fiir das Testen verwendet und die anderen Mengen als TBD. Diese Daten-
aufteilungsstrategie wird in der Hyperparameteroptimierung genutzt, da bei dieser Strategie
Daten aus allen Projekten sowohl in der Trainings- als auch in der Testmenge vorliegen,
wodurch ein méglichst breites Spektrum an Daten abgedeckt wird. Dabei werden die Daten
in funf Teile (k = 5) aufgeteilt, wobei eine Aufteilung fiir das Testen genutzt wird und
die rechtlichen vier fiir das Training der Modelle. Bei dieser Hyperparameteroptimierung
wird keine Kreuzvalidierung durchgefiihrt. Einerseits wiirde sich dadurch der Zeitaufwand
verfiinffachen und andererseits beinhaltet die Testmenge viele und variable Daten, sodass
keine grof3en Varianzen der Performance zwischen den einzelnen Testmengen zu erwar-
ten sind. Bei der Hyperparameteroptimierung werden nur die wichtigen Hyperparameter
Anzahl an Trainingsepochen, Lernrate, Gewichtsverfall und Anzahl an Trainingsdaten
pro Trainingsschritt pro Gerat optimiert. Alle anderen Hyperparameter werden auf den
Standardwerten belassen, welche von der Trainer-Klasse der Python-Bibliothek transformers
vorgegeben werden.
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Abbildung 5.2.: mixed-projekt Datenaufteilungsstrategie - n entspricht der Anzahl an Projekten -
ke N,

5.1.2.1. Erste Stufe

Bei der Hyperparameteroptimierung werden vorerst folgende Hyperparameter mit den
zugehorigen Werten getestet:

« Anzahl an Trainingsepochen: 10; 20

« Lernrate: 5e-6; le-5; 5e-5

« Gewichtsverfall: 0,0

« Anzahl an Trainingsdaten pro Trainingsschritt pro Gerét: 8; 16; 32

Bei der Durchfithrung war auffallig, dass es bei der Anzahl an Trainingsdaten pro Trainings-
schritt pro Gerét 32 ofters zu Abstiirzen kam, da der verfiigbare Grafikkartenspeicher nicht
ausreichte.

Die Ergebnisse (F;-Werte) des ersten Durchlaufs sind in Abbildung 5.3 dargestellt. Bei der
Anzahl an Trainingsepochen wird sichtbar, dass es bei einer hoheren Epochenanzahl zu
besseren Ergebnissen kommt, wenn die Ausreifler aufler Acht gelassen werden. Zusatzlich
wird bei der Anzahl an Trainingsdaten pro Trainingsschritt pro Gerat augenfallig, dass
die Ergebnisse bei allen genutzten Werten in einem dhnlichen Bereich liegen, wenn die
Ausreifler ebenfalls aufler Acht gelassen werden. Bei der Lernrate fallt auf, dass die Ausreifler
nur bei 5e-5 auftreten. Zusatzlich zeigte sich, dass die Lernrate le-5 im Schnitt bessere
Ergebnisse lieferte als 5e-6.
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Abbildung 5.3.: Ergebnisse (F;-Werte) der ersten Stufe der Hyperparameteroptimierung

5.1.2.2. Zweite Stufe

Um zu tiberpriifen, ob die Leistung mit einer weiteren Erhéhung der Anzahl an Trainingsepo-
chen gesteigert werden kann, wird eine zweite Stufe der Hyperparameteroptimierung
durchgefiihrt. Dabei wird sowohl mit der Anzahl an Trainingsepochen als auch mit dem
Gewichtsverfall variiert. Der Gewichtsverfall wird erst in dieser Stufe variiert, da die Durch-
fuhrungsdauer der ersten Stufe zu grof gewesen wire. Die Lernrate und die Anzahl an
Trainingsdaten pro Trainingsschritt pro Gerat wird in dieser Stufe festgesetzt, da die Va-
rianzen mit Ausnahme der Ausreifler gering ausfielen und eine Variation der Werte den
Zeitbedarf deutlich erh6hen wiirde. Die Lernrate wird auf 1le-5 festgesetzt, da mit dieser
Konfiguration im Schnitt die beste Leistung in der vorherigen Stufe erzielt werden konnte.
Fir die Anzahl an Trainingsdaten pro Trainingsschritt pro Gerat wird 16 festgelegt, da 16
im Schnitt bessere Leistung als acht brachte und da 32 zu Abstiirzen des Testprogramms
fihrte.

Fiir diese Stufe der Hyperparameteroptimierung werden folgende Hyperparameter mit den
zugehorigen Werten genutzt:

« Anzahl an Trainingsepochen: 16; 32; 64; 128
» Lernrate: le-5
« Gewichtsverfall: 0,0; 0,1; 0,2; 0,3; 0,4

+ Anzahl an Trainingsdaten pro Trainingsschritt pro Gerat: 16
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Abbildung 5.4.: Ergebnisse (F;-Werte) der zweiten Stufe der Hyperparameteroptimierung

Bei der eigentlichen Durchfithrung der Hyperparameteroptimierung gab es keine Auffallig-
keiten.

Die Ergebnisse (F;-Werte) dieser Stufe sind in Abbildung 5.4 dargestellt. Eine Steigerung
der Leistung mit Erhohung der Anzahl an Trainingsepochen zeigte sich erneut, wobei aber
sichtbar wird, dass diese Steigerung mit der Erh6hung der Anzahl an Trainingsepochen
immer geringer wird. Zusétzlich wird augenfillig, dass die Variation des Gewichtsverfalls
bei fester Anzahl an Trainingsepochen keinen grof3en Einfluss auf die Performance hat. Die
beste Leistung brachte die Kombinationen aus dem Gewichtsverfall 0,3 und der Anzahl an
Trainingsepochen 128.

Es werden keine starken Leistungsverbesserungen mit weiterer Steigerung der Anzahl an
Trainingsepochen erwartet, da sich zeigte, dass die Performance mit Erh6hung nicht mehr
stark steigt. Zusatzlich wiirde eine weitere Erhéhung die Trainingszeit noch weiter erhéhen.
Aus diesem Grund werden nun die optimierten Hyperparameter fiir die Experimente wie
folgt festgelegt:

« Anzahl an Trainingsepochen: 128
o Lernrate: le-5
« Gewichtsverfall: 0,3

« Anzahl an Trainingsdaten pro Trainingsschritt pro Gerat: 16
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5.2. Szenario 1: TL-Generierung

In diesem Szenario stehen dem Entwickler keine fritheren Projekte mit dokumentierten
TLs zur Verfiigung. Zusétzlich sind keine TLs im aktuellen Projekt, auf welchem die TLR
durchgefithrt wird, dokumentiert. Zudem beabsichtigt er nicht, eigene Ressourcen fiir
eine selbststindige Annotation dieser TLs einzusetzen. Ziel des Entwicklers ist es, alle
TLs des aktuellen Projekts zu ermitteln. Damit wird in diesem Szenario die TLR-Aufgabe
TL-Generierung bearbeitet.

Fir dieses Szenario fallt der FA raus, da er zwangsweise annotierte Daten fiir die Feinan-
passung benétigt. Eine Verwendung ohne die Feinanpassung ergibt keinen Sinn, da die
Klassifikationsschicht des genutzten Modells neu initialisierte Modellparameter beinhaltet,
wodurch die Klassifikation zufallig wére [24]. Auch der PA3 kann in diesem Szenario nicht
genutzt werden, da keine annotierten Daten fiir die Beispiele vorliegen. PA1 und PA2 sind
fiir dieses Szenario geeignet, da diese Ansétze keine annotierten Daten benétigen. Fir PA1
liegen die Ergebnisse bereits vor und fiir PA2 stellen mir meine Betreuer die Ergebnisse zur
Verfiigung.

Da in diesem Szenario keine Feinanpassung infrage kommt, entféllt ein direkter Vergleich
zwischen Feinanpassung und Prompting. Dennoch wird ein Experiment und eine Auswer-
tung durchgefiihrt, da Experiment 1 neue Ergebnisse liefert, welche von der Forschungsge-
meinschaft noch nicht betrachtet wurden.

Aus dem Vorherigen ergibt sich fiir dieses Szenario die Forschungsfrage 1: Welchen Einfluss
hat die Verwendung von RAG auf die Leistung bei der automatisierten TL-Generierung von
HLRs zu LLRs mit zero-shot Prompting?

5.2.1. Experiment 1: zero-shot Prompting ohne Retrieval-Augmented
Generation (Prompting-Ansatz 2)

In diesem Experiment wird der PA2 verwendet, indem das LiSSA-Framework [11] fiir den
Ansatz angepasst wird. Eine DA ist nicht notwendig, da keine TBD aus den Datensétzen
entnommen werden, wodurch auf allen Daten getestet wird. Der Zufallswert ist hierbei auf
133742243 festgesetzt.

Die Ergebnisse des Experiments sind in Tabelle 5.2 dargestellt. Die Prazision liegt bei allen
Testdatensétzen in einem niedrigen Bereich unter oder nahe 0,3 und die Ausbeute ist bei
allen Testdatensétzen sehr hoch mit Ausnahme von Modis. Bei Modis liegt die Ausbeute in
einem &hnlichen Bereich wie die Prézision. Die ermittelten F;-Werte liegen alle um 0,3 und
die F,-Werte in einem Bereich von 0,35 bis 0,6.
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. P i
zero-shot Prompting ohne RAG (PA2) zero-shot Prompting

mit RAG (PA1)
Testdatensatz Prizision Ausbeute F F, F, F,
CM1- 0,240 0,933 0,382 0,592 0,519 0,565
NASA
Dronology 0,141 0,900 0,244 0,434 0,575 0,620
GANNT 0,206 0,926 0,337 0,545 0,574 0,556
Modis 0,319 0,366 0,341 0,355 0,255 0,197
WARC 0,168 0,912 0,284 0,484 0,584 0,616
Durchschnitt 0,215 0,807 0,318 0,482 0,501 0,511

Tabelle 5.2.: Ergebnisse von Experiment 1 (zero-shot Prompting ohne RAG (Prompting-Ansatz 2))
und zero-shot Prompting mit RAG (Prompting-Ansatz 1)

5.2.2. Auswertung

Die Ergebnisse fiir die Auswertung dieses Szenarios und die Beantwortung der Forschungs-
frage 1 sind ebenfalls in Tabelle 5.2 aufgezeigt. Wenn man die Ansatze miteinander vergleicht,
dann wird sichtbar, dass die Verwendung von RAG bei PA1 einen deutlichen Zuwachs an
Leistung bringt. Dieser Zuwachs zeigt sich besonders bei den F;-Werten, die im Durch-
schnitt um 0,183 hoher liegen. Auch bei den F,-Werten ist im Schnitt ein Zuwachs erkennbar,
welcher aber deutlich geringer ausfallt. Modis und CM1-NASA sind die einzigen Datensatze,
die herausstechen. Der zero-shot Prompting-Ansatz ohne RAG (PA2) liefert nur bei Modis
bei den F;- und F,-Werten und bei CM1-NASA bei dem F,-Wert eine bessere Performance.

Die Forschungsfrage 1 kann mit diesen Ergebnissen wie folgt beantwortet werden: Die
Verwendung von RAG verbessert die Leistung bei der automatisierten TL-Generierung mit
zero-shot Prompting. Dies zeigt sich besonders bei den F;-Werten, welche fiir die vollauto-
matisierte TLR am wichtigsten sind [11]. Der Ansatz zero-shot Prompting mit RAG bringt
die beste Performance in diesem Szenario.

5.3. Szenario 2: TL-Generierung mit optionalem
Wissenstransfer

In diesem Szenario stehen dem Entwickler nur frithere Projekte mit dokumentierten TLs
zur Verfiigung. Es sind keine TLs im aktuellen Projekt, auf welchem die TLR durchgefiihrt
wird, dokumentiert und er beabsichtigt nicht, eigene Ressourcen fiir eine selbststdndige
Annotation dieser TLs einzusetzen. Ziel des Entwicklers ist es, alle TLs des aktuellen Projekts
zu ermitteln. Damit wird in diesem Szenario die TLR-Aufgabe TL-Generierung bearbeitet.

In diesem Szenario sind alle Ansétze geeignet, da annotierte Daten vorliegen. Die Ergebnisse
von PA1 und PA2 liegen bereits vor und die Performance vom FA wird in Experiment 2
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Abbildung 5.5.: cross-projekt Datenaufteilungsstrategie - n entspricht der Anzahl an Projekten

ermittelt. Mit PA3 wird fiir dieses Szenario kein Experiment durchgefiihrt, da die verfiigbaren
Ressourcen dieser Bachelorarbeit nur fiir maximal ein Experiment mit PA3 ausreichen
und dieses Experiment in Szenario 3 durchgefithrt wird, indem projekt-interne Daten
vorliegen.

Fiir das Szenario und das zugehorige Experiment wird folgende Forschungsfrage 2 ge-
stellt: Welchen Einfluss hat Wissenstransfer aus anderen Projekten auf die Leistung bei der
automatisierten TL-Generierung von HLRs zu LLRs und wie schneiden Feinanpassung und
zero-shot Prompting in diesem Kontext im Vergleich ab?

5.3.1. Experiment 2: Feinanpassungsansatz mit cross-projekt Datenaufteilung

Bei diesem Experiment wird der FA in Kombination mit der cross-projekt DA genutzt,
welche in Abbildung 5.5 aufgezeigt ist. Hierbei werden alle Daten eines Projektes zum
Testen verwendet und alle anderen Daten aus den anderen Projekten als TBD genutzt. In
diesem Experiment werden alle fiinf vorhandenen Datensatze mit einbezogen. Dabei wird
Kreuzvalidierung verwendet, wodurch jeder Datensatz einmal zum Testen genutzt wird.

Die Ergebnisse dieses Experiments sind in Tabelle 5.3 dargestellt. Sowohl die Prazision
als auch die Ausbeute liegen in einem grof3en Bereich. Die Prazision geht von 0,177 bis
1 und die Ausbeute deckt einen Bereich von 0,178 bis 0,773 ab. Bei CM1-NASA, GANNT
und Modis ist die Prazision deutlich hoher als die Ausbeute. Dieser Unterschied fallt bei
Modis, wo die Prézision 1 und Ausbeute 0,049 betragt, am grofiten aus. Bei Dronology
hingegen ist die Ausbeute deutlich groéfler als die Prézision und bei WARC liegen die beiden
Werte in einem dhnlichen Bereich zwischen 30 % und 40 %. Die F;-Werte liegen bei allen
Datensétzen um 0,3, mit Ausnahme von Modis, wo ein niedriger F;-Wert von 0,093 erreicht
wird. Bei Modis ist der F,-Wert noch niedriger als der F;-Wert. Die F,-Werte der anderen
Datensatze liegen zwischen 0,204 und 0,463. Zusatzlich zeigen die Ergebnisse, dass eine
groflere Trainingsdatenanzahl in diesem Fall nicht zwangsweise die Performance verbessert.
Dies wird bei Dronology und WARC deutlich, fiir die weniger Trainingsdaten zur Verfiigung
standen, da sie verglichen mit den anderen Datensétzen grofier sind.
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Testdatensatz Prazision Ausbeute F F,

CM1-NASA 0,500 0,178 0,262 0,204
Dronology 0,177 0,773 0,288 0,462
GANNT 0,455 0,294 0,357 0,316
Modis 1,000 0,049 0,093 0,060
WARC 0,377 0,316 0,344 0,327
Durchschnitt 0,502 0,322 0,269 0,274

Tabelle 5.3.: Ergebnisse von Experiment 2 (Feinanpassungsansatz mit cross-projekt Datenaufteilung)

. . Feinanpassungsansatz
zero-shot Prompting zero-shot Prompting mit cross-proiekt
mit RAG (PA1) ohne RAG (PA2) proj
Datenaufteilung
Testdatensatz F1 F2 F1 F2 F1 F2
CM1- 0,519 0,565 0,382 0,592 0,262 0,204
NASA
Dronology 0,575 0,620 0,244 0,434 0,288 0,462
GANNT 0,574 0,556 0,337 0,545 0,357 0,316
Modis 0,255 0,197 0,341 0,355 0,093 0,060
WARC 0,584 0,616 0,284 0,484 0,344 0,327
Durchschnitt 0,501 0,511 0,318 0,482 0,269 0,274

Tabelle 5.4.: Ergebnisse fiir die Auswertung von Szenario 2 (TL-Generierung mit optionalem Wis-
senstransfer)

5.3.2. Auswertung

Fiir die Auswertung wird sich auf die Einordnung der Ergebnisse des neu durchgefithrten
Experiments 2 in die vorhandenen Ergebnisse von PA1 und PA2 beschrinkt, da ein Vergleich
zwischen PA1 und PA2 bereits in Szenario 1 durchgefiihrt wird.

Die Ergebnisse fiir die Auswertung sind in Tabelle 5.4 dargestellt. Bei allen Datensatzen
liefert der FA schlechtere Ergebnisse als der PA1. Verglichen mit dem PA2 liefert der FA
teilweise bessere Ergebnisse. Dies zeigt sich sowohl bei Dronology (F;- und F,-Werte) als
auch bei GANNT und WARC (F;-Werte). Da bei Modis die Performance deutlich schlechter
war, ist der FA auch im Schnitt schlechter als der PA2, was sich hauptsachlich bei den
Fi-Werten zeigt.

Die Forschungsfrage 2 kann demnach wie folgt beantwortet werden: Durch Wissenstrans-
fer aus anderen Projekten kann bei der TL-Generierung von HLRs zu LLRs mit Feinanpas-
sung keine bessere Leistung wie zero-shot Prompting erzielt werden. Einfaches zero-shot
Prompting ohne RAG liefert dhnliche aber leicht bessere Ergebnisse wie Feinanpassung mit
projekt-externen Daten. Zero-shot Prompting mit RAG liefert deutlich bessere Ergebnisse
wie Feinanpassung und ist in diesem Szenario der Ansatz mit der besten Performance.
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Abbildung 5.6.: intra-projekt Datenaufteilungsstrategie - x € {1,2,...,n |

n entspricht der Anzahl an Projekten} - k € N,

5.4. Szenario 3: TL-Vervollstindigung

In diesem Szenario stehen dem Entwickler keine fritheren Projekte mit dokumentierten
TLs zur Verfiigung. Im aktuellen Projekt, auf welchem die TLR durchgefiihrt wird, stehen
einige TLs zur Verfigung bzw. beabsichtigt der Entwickler eigene Ressourcen fiir eine
selbststandige Annotation dieser TLs einzusetzen. Ziel des Entwicklers ist es, die restlichen
TLs des aktuellen Projekts zu ermitteln. Damit wird in diesem Szenario die TLR-Aufgabe
TL-Vervollstandigung bearbeitet.

In diesem Szenario sind alle Ansétze geeignet, da annotierte Daten vorliegen. Die Ergebnisse
von PA1 und PA2 liegen bereits vor und die Performance von PA3 wird in Experiment
4 ermittelt. Fiir den FA wird fiir dieses Szenario ein neues Experiment (Experiment 3)
durchgefiihrt, da die genutzten Trainingsdaten bei Experiment 2 in diesem Szenario nicht
verfiigbar und projekt-interne Trainingsdaten nun nutzbar sind.

In diesem Szenario wird folgende Forschungsfrage 3 beantwortet: Welchen Einfluss hat
die Menge an vorhandenen projekt-internen TLs auf die Leistung bei der automatisierten
TL-Vervollstandigung von HLRs zu LLRs und wie schneiden Feinanpassung und Prompting
in diesem Kontext im Vergleich ab?

5.4.1. Experiment 3: Feinanpassungsansatz mit intra-projekt Datenaufteilung

Bei diesem Experiment wird der FA in Kombination mit der intra-projekt DA, welche in
Abbildung 5.6 vorgestellt wird, genutzt. Diese Datenaufteilungsstrategie wird fiir jedes
Projekt einzeln ausgefithrt. Alle Daten aus einem Projekt werden hierbei stratifiziert in
k gleich grof3e Mengen aufgeteilt. Eine Menge davon wird als Testdaten genutzt und die
anderen Mengen als TBD. Bei diesem Experiment wird jeder Datensatz stratifiziert in fiinf
Mengen (k = 5) geteilt. In diesem Experiment wird Kreuzvalidierung genutzt, wodurch in
jedem Datensatz jede Menge zum Testen verwendet wird. Wie in Abbildung 5.7 dargestellt,
werden aus der Trainingsdatenmenge nicht immer alle Daten entnommen, sondern nur
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BERT [8] [ Mogliche Trainingsdaten } E Testdaten j
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Abbildung 5.7.: Ablauf von Experiment 3 (Feinanpassungsansatz mit intra-projekt Datenaufteilung) -
Ablauf wird fiir jede Kombination aus Datensatz, Testmenge und Trainingsdatenanzahl wiederholt
-x € {z € {32,64,128, 256,512, 1024, 2048, 4096, 8192, 16384, maximum} | z-Daten sind moglich} -
y=4

eine bestimmte Anzahl stratifiziert. Je Kombination aus Datensatz, Testmenge und Trai-
ningsdatenanzahl werden vier Modelle erstellt. Fiir jedes dieser Modelle werden zufillig
andere Trainingsdaten ausgewéhlt. Insgesamt werden demnach 20 Modelle pro Trainings-
datenanzahl in jedem Datensatz trainiert und getestet. Bei diesem Experiment wird mit 32
Trainingsdaten gestartet, da bei dieser Anzahl bei den meisten Datensédtzen mindestens ein
TL vorliegt. Die Trainingsdatenanzahl wachst dann exponentiell und endet mit der grofit-
moglichen Anzahl, also 80 % der Projektdaten. Der exponentielle Anstieg stellt sicher, dass
kleine Datensétze gut abgedeckt werden und die Experimentdauer bei grofien Datensétzen
im vorgegebenen Rahmen bleibt.

Die Ergebnisse (Durchschnitt und Standardabweichung der F;- und F,-Werte pro Trainings-
datenanzahl auf jedem Datensatz) sind in Abbildung 5.8 abgebildet. Die konkreten Werte
konnen in Tabellen des Anhangs eingesehen werden. Sie zeigen, dass sich die F;- und
F,-Werte nur wenig unterscheiden. Zusiatzlich wird sichtbar, dass die durchschnittliche
Leistung der feinangepassten PLMs bei wenigen Trainingsdaten schlecht ist und sich mit
Erhohung der Trainingsdatenanzahl steigert. Die durchschnittlichen Werte sind bei we-
nigen Trainingsdaten bei den kleineren Datensatzen besser. Modis sticht dabei besonders
heraus, da die Ergebnisse auf dem Modis-Datensatz im Schnitt deutlich tiber denen der
anderen Datensitze liegen. Die F;- und F,-Werte erreichen bei Modis und Dronology bei
maximalen Trainingsdaten dhnliche Durchschnittswerte um 0,7. Bei Modis ist die durch-
schnittliche Abweichung der Werte am Anfang am grofiten und sinkt mit Erh6hung der
Trainingsdatenanzahl. Bei allen anderen Datensitzen ist die Standardabweichung bei ge-
ringer Trainingsdatenanzahl klein, steigt dann mit Erhéhung, erreicht das Maximum und
stagniert oder sinkt leicht mit weiterer Steigerung der Anzahl an Trainingsdaten.
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Abbildung 5.8.: Ergebnisse von Experiment 3 (Feinanpassungsansatz mit intra-projekt Datenauf-
teilung) - Durchschnittliche F;-Werte mit Standardabweichungen (links) und durchschnittliche
F,-Werte mit Standardabweichungen (rechts)

5.4.2. Experiment 4: few-shot/multi-shot Prompting (Prompting-Ansatz 3) mit
intra-projekt Datenaufteilung

Bei diesem Experiment wird der PA3 in Kombination mit der intra-projekt Datenaufteilung
genutzt. Der Zufallswert wird auf 3426785 festgesetzt. Jeder Datensatz wird, wie in Expe-
riment 3, jeweils stratifiziert in funf Mengen (k = 5) aufgeteilt. Zusétzlich wird ebenfalls
Kreuzvalidierung verwendet. Die Durchfithrung des Experiments ist in Abbildung 5.9 aufge-
zeigt. Es werden nicht alle Daten aus der Beispieldatenmenge entnommen, sondern nur eine
festgelegte Anzahl. Diesmal erfolgt die Entnahme nicht stratifiziert, da bei einer geringen
Beispieldatenanzahl keine TLs vorhanden wiren. Es wird die gleiche Verteilung wie bei der
Entnahme pro Epoche beim FA (50 % TLs und 50 % Nicht-TLs) gewahlt, weil kein anderer
Referenzwert vorhanden ist, da Etezadi u.a. [9] ihre genutzte Verteilung beim few-shot
Prompting nicht angaben. Fiir jede Kombination aus Datensatz, Testmenge und Beispiel-
datenanzahl wird bei CM1-NASA, GANNT, Modis und WARC viermal auf der Testmenge
mit zufillig gewahlten, unterschiedlichen Beispielen getestet. Bei Dronology wird diese
Anzahl auf zwei reduziert, da die API-Kosten den Rahmen der Bachelorarbeit tiberschreiten
wiirden. Es werden zehn verschiedene Beispieldatenanzahlen verwendet: zwei, vier, sechs,
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Abbildung 5.9.: Ablauf von Experiment 4 (few-shot/ multi-shot Prompting (PA3) mit intra-projekt
Datenaufteilung) - Ablauf wird fiir jede Kombination aus Datensatz, Testmenge und Beispieldaten-
anzahl wiederholt - x € {2,4, 6, 8, 10, 20, 30, 40, 50, 60} - y = 4 bei CM1-NASA, GANNT, Modis und
WARC und y = 2 bei Dronology

acht, zehn, 20, 30, 40, 50 und 60. Dadurch wird sowohl der few-shot Bereich mit einigen
Beispielen als auch der multi-shot Bereich mit vielen Beispielen abgedeckt.

Die Ergebnisse des Experiments sind in Abbildung 5.10 veranschaulicht. Zusatzlich sind die
genauen Ergebnisse wieder in Tabellen des Anhangs dargestellt. Die durchschnittlichen
Fi- und F,-Werte steigen bei allen Datensatzen mit Steigerung der Beispielanzahl, wobei
der Anstieg am Anfang zwischen zwei und zehn Beispielen an grofiten ist. Danach stagnie-
ren die Werte oder der Anstieg nimmt ab, was am stiarksten bei CM1-NASA und Modis
sichtbar wird. Insgesamt zeigen die Ergebnisse, dass der Leistungszuwachs insbesondere im
Bereich von etwa acht bis zehn Beispieldaten am grof3ten ist, wenn wenige Beispiele genutzt
werden. Im Vergleich der Datensatze liefert der Ansatz bei Modis bei den F;-Werten die
besten Ergebnisse und bei Dronology die schlechtesten. Bei CM1-NASA werden dhnliche,
jedoch leicht bessere Ergebnisse erzielt als bei Dronology. Die Ergebnisse von GANNT
und WARC liegen zwischen den Ergebnissen von Modis und CM1-NASA. Die Leistung,
gemessen an den durchschnittlichen F,-Werten, liegt bei GANNT, Modis und WARC in
einem dhnlichen Bereich. Nur bei CM1-NASA und Dronology ist sie deutlich schlechter.
Die Standardabweichungen liegen alle unter 0,2 und bei Modis sind sie am grofiten. Andere
Auffalligkeiten sind bei den durchschnittlichen Abweichungen nicht sichtbar.

5.4.3. Auswertung

Fir die Auswertung wird sich ebenfalls wieder auf die Einordnung der Ergebnisse der
neuen Experimente beschrankt. Bei Ansatzen, bei denen die TBD-Anzahl variiert wird,
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Abbildung 5.10.: Ergebnisse von Experiment 4 (few-shot/ multi-shot Prompting (PA3) mit intra-projekt
Datenaufteilung) - Durchschnittliche F;-Werte mit Standardabweichungen (links) und durchschnitt-
liche F,-Werte mit Standardabweichungen (rechts)

wird in dieser Auswertung der Fokus auf die Anzahl der TLs in den TBD und nicht auf die
TBD-Anzahl gelegt. Grund dafiir ist, dass die TBD unterschiedliche Verteilung von TL zu
Nicht-TL besitzen.

Die durchschnittliche/regressierte Performance der Ansétze tiber alle Datensétze ist in Abbil-
dung 5.11 dargestellt. Die Leistungen der Ansatze auf jedem Datensatz sind in Abbildungen
des Anhangs aufgezeigt, wobei aber auch Ansatze dargestellt sind, die in diesem Szenario
nicht nutzbar sind. Der FA mit projekt-internen Trainingsdaten liegt bei einer geringen
TL-Anzahl unter zehn im Schnitt deutlich unter allen drei Prompting-Ansétzen. Im Bereich
um 15 TLs tiberschreitet der FA in diesem Szenario im Durchschnitt den einfachen zero-shot
Prompting-Ansatz (PA2), gemessen an den F;-Werten. Dies entspricht im Durchschnitt ca. 22
% der Projekt-TLs. Die Leistung des FA, gemessen an den F;-Werten, iibersteigt ab ca. 45 TLs
in den Trainingsdaten die Performance vom zero-shot Prompting-Ansatz mit RAG (PA1), was
durchschnittlich etwa 66 % der Projekt-TLs entspricht. Ab dieser Schwelle liegen auch die
F,-Werte des FA ca. auf dem Niveau beider zero-shot Prompting-Ansatze. Der FA iiberschrei-
tet nicht direkt few-shot/multi-shot Prompting, was daran liegt, dass nur bis maximal 30 TLs
in den Beispieldaten getestet wurde. Wenn die Leistung vom PA3 mit weiterer Steigerung
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Abbildung 5.11.: Durchschnittliche/regressierte Ergebnisse iiber alle Datensétze fiir die Auswertung
von Szenario 3 (TL-Vervollstindigung) - F;-Werte (links) und F,-Werte (rechts) - Spline-Regression
(geglattet, log-transformierte x-Werte)

der Beispielanzahl nicht mehr steigt, dann wiirde der FA few-shot/ multi-shot Prompting
ab ca. 35 TLs (Durchschnittlich ca. 51 % der Projekt-TLs) im F;-Wert und ab ca. 90 TLs
(Durchschnittlich ca. 132 % der Projekt-TLs) im F,-Wert tiberschreiten. Die Performance, ge-
messen an den F;-Werten, vom few-shot/ multi-shot Prompting liegt im Schnitt zwischen der
Performance vom zero-shot Prompting mit RAG und ohne RAG. Hinsichtlich der F,-Werte
tbertrifft die durchschnittliche Performance des few-shot/ multi-shot Promptings bereits ab
einem TL in den Beispieldaten die Leistung beider zero-shot Prompting-Ansétze.

Die Antwort auf die Forschungsfrage 3 lasst sich wie folgt zusammenfassen: Wenn sich
die Anzahl der TLs in den TBD erhoht, dann steigt auch die Leistung, wenn der Ansatz
annotierte Daten benétigt. Die Performance von few-shot/ multi-shot Prompting ist bei
weniger TLs deutlich besser als beim FA, wobei der Anstieg in diesem Szenario deutlich
geringer ausfallt als bei der Feinanpassung. Bis zu durchschnittlich etwa 45 vorhandenen
TLs aus dem aktuellen Projekt erzielt zero-shot Prompting mit RAG die beste Performance
fiir die automatisierte TL-Vervollstaindigung, wahrend ab einer héheren Anzahl an TLs der
FA iiberlegen ist.
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Abbildung 5.12.: intra-cross-projekt Datenaufteilungsstrategie - n entspricht der Anzahl an Projekten
- k € N+

5.5. Szenario 4: TL-Vervollstandigung mit optionalem
Wissenstransfer

In diesem Szenario stehen dem Entwickler frithere Projekte mit dokumentierten TLs zur
Verfiigung. Im aktuellen Projekt, auf welchem die TLR durchgefiihrt wird, stehen einige
TLs zur Verfiigung bzw. beabsichtigt der Entwickler eigene Ressourcen fiir eine selbst-
stindige Annotation dieser TLs einzusetzen. Ziel des Entwicklers ist es, die restlichen
TLs des aktuellen Projekts zu ermitteln. Damit wird in diesem Szenario die TLR-Aufgabe
TL-Vervollstandigung bearbeitet.

In diesem Szenario sind alle Ansétze geeignet, da annotierte Daten vorliegen. Zusatzlich sind
alle vorherigen Experimente auf dieses Szenario iibertragbar, da sowohl projekt-interne als
auch projekt-externe Daten vorliegen. Dazu wird fiir dieses Szenario ein neues Experiment
mit dem FA (Experiment 5) durchgefithrt, indem projekt-interne und -externe Daten fiir
das Training genutzt werden. Mit PA3 wird fiir dieses Szenario kein weiteres Experiment
durchgefiihrt, da die verfiigbaren Ressourcen dieser Bachelorarbeit nur fiir maximal ein
Experiment, welches in Szenario 3 durchgefiithrt wird, ausreichen.

Fiir das Szenario und das zugehorige Experiment wird folgende Forschungsfrage 4 unter-
sucht: Welchen Einfluss hat Wissenstransfer aus anderen Projekten auf die Leistung bei
der automatisierten TL-Vervollstandigung von HLRs zu LLRs mit Feinanpassung und wie
schneiden Feinanpassung und Prompting in diesem Kontext im Vergleich ab?

5.5.1. Experiment 5: Feinanpassungsansatz mit intra-cross-projekt
Datenaufteilung
Bei diesem Experiment wird der FA in Kombination mit der intra-cross-projekt DA, welche

in Abbildung 5.12 veranschaulicht ist, genutzt. Diese Strategie ist eine Kombination aus
der intra-projekt und der cross-projekt Datenaufteilungsstrategie. Bei dieser wird zuerst
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Abbildung 5.13.: Ablauf von Experiment 5 (Feinanpassungsansatz mit intra-cross-projekt Daten-
aufteilung) - Ablauf wiederhole ich fir jede Kombination aus Datensatz, Testmenge und Trai-
ningsdatenanzahl - x € {z € {32,64,128,256,512,1024, 2048, 4096,8192, 16384, maximum} |
z-Daten sind moglich} -y = 2

ein Projekt nach der intra-projekt Datenaufteilungsstrategie aufgeteilt. Dabei erhalt man
eine Testmenge und eine Menge an TBD. Zu den TBD werden dann noch alle Daten aus
den anderen Projekten hinzugefiigt. Jeder Datensatz wird bei diesem Experiment wieder
jeweils stratifiziert in fiinf Mengen (k = 5) aufgeteilt. In diesem Experiment wird erneut
Kreuzvalidierung durchgefiithrt. Der Ablauf des Experiments ist in Abbildung 5.13 dargestellt.
Zum Training werden alle Daten aus der projekt-externen Trainingsdatenmenge und eine
bestimmte Anzahl aus der projekt-internen Trainingsdatenmenge stratifiziert entnommen.
Je Kombination aus Datensatz, Testmenge und Trainingsdatenanzahl werden zwei Modelle
erstellt. Die projekt-internen Trainingsdatenanzahlen werden gleich wie bei Experiment 3
gewihlt.

Die Ergebnisse von Experiment 5 sind in Abbildung 5.14 dargestellt. Dazu ist Performance
wieder in Tabellen des Anhangs aufgezeigt. Im Schnitt steigen die Werte bei allen Datensét-
zen mit Steigerung der Anzahl projekt-interner Trainingsdaten fast dauerhaft mit Ausnahme
von Dronology, wo die durchschnittlichen F,-Werte bis 1024 Trainingsdaten sinken und
danach erst steigen. Der grofite Anstieg der F;- und F,-Werte zeigt sich bei Modis und
der kleinste bei GANNT. Die Standardabweichungen bei Dronology sind deutlich geringer
verglichen mit den anderen Datensatzen. Zuséatzlich schwanken die Standardabweichungen
bei den anderen Datensatzen stark.
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Abbildung 5.14.: Ergebnisse von Experiment 5 (Feinanpassungsansatz mit intra-cross-projekt Daten-
aufteilung) - Durchschnittliche F;-Werte mit Standardabweichungen (links) und durchschnittliche
F,-Werte mit Standardabweichungen (rechts)

5.5.2. Auswertung

Fiir die Auswertung wird sich ebenfalls wieder auf Vergleichsmoglichkeiten, die neu hinzu-
kommen, beschriankt. Bei Ansitzen, bei denen die TBD-Anzahl variiert wird, wird in dieser
Auswertung der Fokus erneut auf die Anzahl der TLs in den TBD gelegt.

Die durchschnittliche/regressierte Performance der Ansédtze tiber alle Datensétze ist in
Abbildung 5.15 aufgezeigt und die Ergebnisse der Ansatze pro Datensatz sind in Abbil-
dungen des Anhangs abgebildet. In Bezug auf die F;- und F,-Werte zeigt der FA bereits
dann eine bessere Leistung im Durchschnitt, wenn neben projekt-externen Trainingsdaten
mindestens ein projekt-interner TL enthalten ist. Zusétzlich fallt die Leistung vom FA, ge-
messen an den beiden Fg-Werten, im Durchschnitt héher aus, wenn neben projekt-internen
auch projekt-externe Daten zum Training genutzt werden. Dieser Leistungszuwachs nimmt
mit zunehmender Menge projekt-interner Trainingsdaten ab. Hinsichtlich der F;-Werte
tiberschreitet der FA mit projekt-internen und -externen Trainingsdaten im Durchschnitt
ab ca. zwei projekt-internen TLs (Durchschnittlich ca. 3 % der Projekt-TLs) die Leistung des
few-shot/ multi-shot Prompting-Ansatzes und liegt dauerhaft iiber dem zero-shot Prompting
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Abbildung 5.15.: Durchschnittliche/regressierte Ergebnisse iiber alle Datensétze fiir die Auswertung
von Szenario 4 (TL-Vervollstindigung mit optionalem Wissenstransfer) - F;-Werte (links) und F,-
Werte (rechts) - Spline-Regression (gegléttet, log-transformierte x-Werte)

Ansatz ohne RAG. Den zero-shot Prompting Ansatz mit RAG tbertrifft der FA ab durch-
schnittlich 20 projekt-internen TLs in den Trainingsdaten, gemessen an den F;-Werten. Dies
sind im Schnitt etwa 29 % der Projekt-TLs. Beziiglich der F,-Werte {iberschreitet der FA mit
projekt-externen und -internen Trainingsdaten few-shot/ multi-shot Prompting (PA3) mit
projekt-internen Beispielen nie direkt. Wenn die Leistung vom PA3 mit weiterer Steigerung
der Beispielanzahl nicht mehr steigt, dann wiirde der FA few-shot/ multi-shot Prompting ab
ungefahr 90 TLs im F,-Wert Giberschreiten. In Bezug auf die F,-Werte tiberschreitet der FA
mit projekt-internen und -externen Trainingsdaten zero-shot Prompting ohne RAG ab unge-
fahr 15 TLs in den projekt-internen Trainingsdaten und zero-shot Prompting mit RAG ab ca.
25 TLs (Durchschnittlich ca. 37 % der Projekt-TLs). Der FA liegt durchschnittlich dauerhaft
unter der Leistung von allen Prompting-Ansatzen, wenn nur projekt-externe Trainingsdaten
genutzt werden. Auflerdem ist dieser Ansatz mit den genutzten Trainingsdaten ab etwa
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einer Anzahl von zehn TLs schlechter als der FA mit projekt-internen Trainingsdaten, was
im Schnitt ungefahr 15 % der Projekt-TLs sind.

Beziiglich der Forschungsfrage 4 ergeben sich folgende Erkenntnisse: Die Leistung ver-
bessert sich, wenn man bei der Feinanpassung zusitzlich projekt-externe Daten zu den
projekt-internen Trainingsdaten hinzufiigt. Diese Verbesserung zeigt sich am starksten,
wenn wenig projekt-interne TLs in den Trainingsdaten vorliegen. Unter 20 TLs im Durch-
schnitt in den projekt-internen Trainingsdaten liefert der PA1 (zero-shot Prompting mit
RAG) die beste Performance fiir die automatisierte TL-Vervollstdndigung, wenn projekt-
externe Daten vorliegen. Ab 20 TLs ist im Schnitt der FA mit projekt-internen und -externen
Trainingsdaten der Ansatz mit der besten Leistung.
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6. Einschrankungen und Ausblick

In diesem Kapitel werden wichtige Grenzen dieser Bachelorarbeit zusammengefasst. Dabei
werden sowohl mogliche Bedrohungen der Validitét als auch Limitierungen erldutert. Aus
letzteren ergeben sich zugleich Ansatzpunkte fiir zukiinftige Arbeiten.

6.1. Bedrohungen der Validitat

Es gibt verschiedene Eigenschaften der durchgefiithrten Experimente, die die Aussagekraft
der Ergebnisse moglicherweise beeintrachtigen. Um die Beeintrachtigungen abzuschwéchen,
wurden, wenn moglich, verschiedene Maflinahmen unternommen.

6.1.1. Interne Validitat

Eine potenzielle Gefahrdung der internen Validitat ergibt sich durch die Auswahl der TBD
und Testdaten, da beobachtete Leistungsunterschiede moglicherweise auf diese Auswahl
zuriickzufithren sind. Fiir eine Reduktion dieser moglichen Gefahr wurde die zufallige Wahl
der TBD fiir jede TBD-Anzahl mehrfach durchgefiihrt. Dabei wurden immer die gleichen
Testdaten in Kombination mit Kreuzvalidierung genutzt und die Ergebnisse anschlieflend
gemittelt.

Die Auswahl der Datensétze bedroht unter Umstanden ebenfalls die interne Validitat [21].
Um diese Bedrohungen zu reduzieren, wurden bekannte Datensitze genutzt, welche von
der Forschungsgemeinschaft schon mehrfach verwendet wurden [13, 21].

Eine weitere mogliche Gefdhrdung der internen Validitét stellt die Verwendung von open-
source Datensétzen dar. Dadurch fand das Vortraining der PLMs méglicherweise auch mit den
Daten der Datensétze statt, wodurch die Experimente eventuell nicht die Leistungsfahigkeit
der Ansitze ermittelten, sondern nur, ob die PLMs bekannte Daten wiedererkannten.

6.1.2. Externe Validitat

Die open-source Eigenschaft der Datensatze ist zusétzlich eine Bedrohung der externen Vali-
ditat, da sich die Ergebnisse moglicherweise nicht auf closed-source Datensatze iibertragen
lassen [21].
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Auflerdem sind die Datensétze teilweise relativ alt [21]. Dies stellt auch eine Gefihrdung
der Validitit dar, da die Ubertragbarkeit der Ergebnisse auf modernere Datensitze mogli-
cherweise eingeschrankt ist [21].

Zusatzlich zeigten Fuchf3 u. a. [10] und Hey u. a. [21], dass die Datensatze teilweise viele
Artefakte enthalten, die keinem TL zugeordnet sind. Diese Eigenschaft kann darauf hindeu-
ten, dass die Datensitze unvollstindig sind [10, 21]. Daraus ergibt sich moglicherweise eine
Beeintrachtigung der externen Validitat, da sich die Ergebnisse gegebenenfalls nicht auf
vollstandige Datensatze iibertragen lassen [24].

Eine weitere potenzielle Bedrohung der Validitat ergibt sich durch die Art, wie die Hyper-
parameteroptimierung durchgefiithrt wurde. Diese lasst sich nicht direkt auf realistische
Anwendungsszenarien iibertragen, da bei der durchgefithrten Hyperparameteroptimierung
alle verfiigbaren Daten verwendet wurden, welche in realen Szenarien nicht vorliegen.

Dazu zeigen die genutzten PLMs nichtdeterministisches Verhalten [21, 34]. Um diese even-
tuelle Bedrohung moglichst weitgehend zu reduzieren, wurde, wenn mdglich, ein fester
Zufallswert verwendet und die Temperatur auf null gesetzt [21].

6.1.3. Konstruktvaliditat

Eine mogliche Bedrohung der Konstruktvaliditét ergibt sich durch die Auswahl der Prompts,
Modelle und Metriken, da diese Festlegungen die Ergebnisse beeinflussen [11, 18]. Um diese
Bedrohung zu verringern, wurden nur Modelle verwendet, die von der Forschung bereits
genutzt wurden. Dariliber hinaus wurden ausschliefilich Prompts genutzt, die entweder
in fritheren Arbeiten verwendet oder auf Basis dieser abgeleitet wurden. Des Weiteren
wurden die Metriken ausgewahlt, die am haufigsten von der Forschung fiir die TLR genutzt
wurden.

6.2. Limitierungen und zukiinftige Arbeiten

Es gibt verschiedene mogliche Limitierungen dieser Bachelorarbeit, die sich aufgrund be-
grenzter Ressourcen, wie z.B. Zeit oder Geld, ergaben. Diese Limitierungen bieten Potenzial
fir zuktnftige Arbeiten.

Bei den Untersuchungen wurden die PLMs fiir jeden Ansatz festgesetzt. Verwandte Arbeiten
zeigten in der Vergangenheit aber, dass die Nutzung anderer PLMs die Performance stark ver-
andern kann [11, 21, 24]. Arbeiten sollten deswegen in der Zukunft meine Experimente mit
anderen Grundmodellen wiederholen, da so ein vollstandigerer Vergleich erméglicht wird.
Dabei konnen beispielsweise modernere Modelle, wie GPT-5 oder Deepseek-R1, genutzt
und/oder open-source Modelle verwendet werden.

In dieser Arbeit wurde nur ein FA evaluiert. In der Forschung wurden auch verschiede-
ne andere Ansitze erstellt und evaluiert, die Feinanpassung nutzen, welche in Zukunft
zu diesem Vergleich hinzugefiigt werden sollte. Diese Ansétze verwenden beispielsweise
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LoRa [22], Prompt-Tuning [23], P-Tuning-v2 [27], Dekodierer-PLMs und/oder Liickentext-
aufgaben. Zusatzlich wenden diese Ansétze teilweise Datenaugmentierung an, wodurch
die Trainingsdaten kiinstlich erweitert werden, ohne dass man mehr annotierte Daten
benotigt.

Bei den Experimenten wurde aufgezeigt, dass sowohl RAG als auch few-shot/ multi-shot
Prompting verglichen mit zero-shot Prompting bessere Ergebnisse erzielen. Zukiinftige
Arbeiten sollten also iiberpriifen, ob eine Kombination aus RAG und few-shot/ multi-shot
Prompting die Leistung weiter steigern kann. Aufgrund begrenzter Ressourcen war es au-
Berdem nicht moglich, die unterschiedlichen Prompting-Ansétze mit variierenden Prompts
zu evaluieren und beim few-shot/multi-shot Prompting andere TL zu Nicht-TL Verhalt-
nisse zu testen. Zuséatzlich konnte nicht getestet werden, wie gut die Leistung von few-
shot/ multi-shot Prompting ist, wenn man projekt-externe Beispiele und eine Kombination
aus projekt-internen und -externen Beispielen nutzt.

Dariiber hinaus konnte in dieser Bachelorarbeit nur die Requirements Engineering-Aufgabe
TLR betrachtet werden. Wie Feinanpassung und Prompting im Vergleich auf anderen
Requirements Engineering-Aufgaben, wie beispielsweise der Anforderungsklassifikation,
abschneiden, sollte in zukiinftigen Arbeiten untersucht werden.
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7. Fazit

Das Hauptziel dieser Bachelorarbeit bestand darin, zu ermitteln, mit welcher Anzahl an
TBD unter welchen Bedingungen welcher Feinanpassungs- oder Prompting-Ansatz bei der
vollautomatisierten TLR von HLRs zu LLRs die beste Performance erzielt. Dazu wurde ein
Vergleich auf fiinf Datensatzen/Projekten durchgefiihrt. Fiir den Vergleich wurden zunéchst
geeignete TLR-Ansatze aus der Forschung identifiziert und bei Bedarf selbst implemen-
tiert. Anschlieflend wurden vier realistische Szenarien konzipiert, die als Grundlage fiir
den Vergleich dienten und bei denen die beiden TLR-Aufgaben TL-Generierung und TL-
Vervollstandigung bearbeitet wurden. Insgesamt wurden fiinf Experimente durchgefiihrt,
um fehlende Ergebnisse zu ermitteln.

Beim Vergleich zeigte sich, dass zero-shot Prompting mit RAG von Fuchf} u. a. [11] und Hey
u.a. [21] in Bezug auf die F;-Werte im Durchschnitt der Ansatz mit der besten Performance
bei der TL-Generierung ist. Bei dieser miissen alle TLs eines Projekts ermittelt werden.
Bei der TL-Vervollstandigung, bei der bereits TLs des Projekts vorliegen und der Rest
ermittelt werden muss, liefert zero-shot Prompting mit RAG bei wenigen vorhandenen
TLs die besten Ergebnisse, gemessen an den F;-Werten. Wenn frithere annotierte Projekte
vorliegen, dann tbersteigt Feinanpassung zero-shot Prompting mit RAG ab ungefahr 20
vorhandenen projekt-internen TLs in den F;-Werten. Wenn keine fritheren annotierten
Projekte vorhanden sind, iibersteigt Feinanpassung in den F;-Werten zero-shot Prompting
mit RAG erst ab etwa 45 vorhandenen TLs.

Die Ergebnisse bedeuten, dass zero-shot Prompting mit RAG in Bezug auf die Performance
in den meisten Fallen der aktuell beste vollautomatisierte Ansatz fiir die TLR ist. Wenn bei
einem grofleren Projekt bereits viele projekt-interne TLs vorliegen und/oder wenn frithere
annotierte Projekte vorhanden sind, dann kann sich Feinanpassung moglicherweise lohnen.
Bei kleineren Projekten, die eine dhnliche oder geringere Grofie wie CM1-NASA oder
GANNT haben, ist Feinanpassung im Durchschnitt nicht geeignet, wenn keine fritheren
annotierten Projekte verfiigbar sind. Grund dafiir ist, dass fiir eine bessere Performance
mehr TLs benotigt werden, als in den Datensétzen vorhanden sind. Allerdings hangen die
Ergebnisse auch stark vom jeweiligen Datensatz ab, was sich insbesondere an Modis zeigt,
bei dem Feinanpassung bereits bei deutlich weniger TLs besser wird als Prompting. Damit
wird deutlich, dass kein Ansatz universell iiberlegen ist.

Es ist wichtig hervorzuheben, dass die Validitdt der Ergebnisse unter Umstédnden beispiels-
weise durch die genutzten Testdatensétze beeintrachtigt sein kann. Auflerdem ist dieser
Vergleich nicht vollstindig, da deutlich mehr TLR-Ansétze und -Ansatzvarianten mit un-
terschiedlichen Variablen (Prompts, Modelle, usw.) existieren, als in dieser Bachelorarbeit
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7. Fazit

betrachtet werden konnten. Der Vergleich sollte dementsprechend von zukiinftigen Arbeiten
um neue Ansitze und weitere Testdatensétze erweitert werden.
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A. Anhang

A.1. Ergianzende Materialien zu den Datensatzen
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Abbildung A.1.: Anzahl der Tokens fiir BERT in den Anforderungen der Datensétze
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Abbildung A.2.: Anzahl der Tokens fiir GPT-4o0(-mini) in den Anforderungen der Datensitze

A.2. Ergdanzende Materialien zu Experiment 3

TL-Anzahl
Trainings- in den Fi- F1- F,- Fa-
& . b Standard- e Standard-
datenanzahl Trainings- Durchschnitt . Durchschnitt .
abweichung abweichung
daten

32 0,038 0,079 0,031 0,067
64 2 0,088 0,105 0,069 0,084
128 5 0,124 0,121 0,106 0,103
256 10 0,171 0,142 0,164 0,140
512 20 0,334 0,141 0,311 0,138
{932,933} 36 0,432 0,118 0,414 0,119

Tabelle A.1.: Ergebnisse auf CM1-NASA von Experiment 3 (Feinanpassungsansatz mit intra-projekt

Datenaufteilung)
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A.2. Ergdnzende Materialien zu Experiment 3

TL-Anzahl
Trainings- in den Fi- Fi- F,- Fo-
gy . Standard- . Standard-
datenanzahl Trainings-  Durchschnitt . Durchschnitt .
abweichung abweichung
daten

32 0 0,021 0,000 0,051 0,000
64 1 0,040 0,055 0,047 0,061
128 1 0,033 0,032 0,026 0,027
256 3 0,071 0,053 0,063 0,047
512 5 0,146 0,093 0,126 0,085
1024 11 0,353 0,083 0,313 0,089
2048 22 0,419 0,077 0,397 0,090
4096 43 0,529 0,066 0,525 0,081
8192 86 0,602 0,069 0,614 0,068
16384 173 0,682 0,045 0,694 0,048
{16711, 16712} 176 0,691 0,053 0,700 0,046

Tabelle A.2.: Ergebnisse auf Dronology von Experiment 3 (Feinanpassungsansatz mit intra-projekt

Datenaufteilung)
TL-Anzahl
Trainings- in den F;- Fi- F,- Fa-
8 . b Standard- e Standard-
datenanzahl Trainings- Durchschnitt . Durchschnitt .
abweichung abweichung
daten

32 2 0,053 0,088 0,044 0,075
64 4 0,082 0,085 0,076 0,079
128 7 0,147 0,103 0,131 0,103
256 15 0,210 0,108 0,194 0,109
512 {29,30} 0,287 0,104 0,289 0,123
{938,939} {54,55} 0,343 0,094 0,344 0,113

Tabelle A.3.: Ergebnisse auf GANNT von Experiment 3 (Feinanpassungsansatz mit intra-projekt

Datenaufteilung)
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TL-Anzahl
Trainings- in den Fi- Fi- F,- Fa-
; gy o Standard- e Standard-
datenanzahl Trainings-  Durchschnitt . Durchschnitt .
abweichung abweichung
daten

32 1 0,302 0,214 0,343 0,246

64 3 0,415 0,202 0,423 0,233

128 6 0,499 0,211 0,528 0,238

256 11 0,560 0,189 0,570 0,226

512 {22, 23} 0,590 0,132 0,621 0,166
{744,745} {32, 33} 0,691 0,110 0,700 0,139

Tabelle A.4.: Ergebnisse auf Modis von Experiment 3 (Feinanpassungsansatz mit intra-projekt Daten-

aufteilung)
TL-Anzahl
Trainings- in den Fi- Fi- F,- Fa-
& . . Standard- Z Standard-
datenanzahl Trainings- Durchschnitt . Durchschnitt .
abweichung abweichung
daten
32 1 0,036 0,042 0,029 0,034
64 2 0,058 0,033 0,051 0,032
128 3 0,089 0,060 0,081 0,060
256 6 0,105 0,071 0,091 0,066
512 12 0,189 0,075 0,159 0,064
1024 25 0,372 0,110 0,346 0,108
2048 {49, 50} 0,530 0,054 0,522 0,064
4096 {99, 100} 0,608 0,082 0,592 0,084
{4485, 4486} {108, 109} 0,622 0,083 0,621 0,090

Tabelle A.5.: Ergebnisse auf WARC von Experiment 3 (Feinanpassungsansatz mit intra-projekt Da-

tenaufteilung)
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A.3. Ergdnzende Materialien zu Experiment 4

A.3. Erganzende Materialien zu Experiment 4

o TL-Anzahl Fi- Fy-
Beispiel- . F;- F,-
in den . Standard- . Standard-
datenanzahl .. Durchschnitt ) Durchschnitt .
Beispieldaten abweichung abweichung
2 1 0,287 0,064 0,473 0,084
4 2 0,316 0,048 0,505 0,070
6 3 0,334 0,070 0,512 0,093
8 4 0,333 0,085 0,510 0,107
10 5 0,319 0,071 0,499 0,099
20 10 0,336 0,063 0,519 0,080
30 15 0,309 0,059 0,496 0,091
40 20 0,327 0,065 0,509 0,081
50 25 0,338 0,090 0,523 0,113
60 30 0,352 0,072 0,536 0,084

Tabelle A.6.: Ergebnisse auf CM1-NASA von Experiment 4 (few-shot/ multi-shot Prompting (PA3) mit
intra-projekt Datenaufteilung)

o TL-Anzahl Fi- Fy-
Beispiel- . Fi- F,-
in den . Standard- . Standard-
datenanzahl .. Durchschnitt . Durchschnitt .
Beispieldaten abweichung abweichung
2 1 0.257 0.040 0.439 0.048
4 2 0.259 0.069 0.434 0.077
6 3 0.287 0.051 0.463 0.049
8 4 0.270 0.029 0.457 0.032
10 5 0.298 0.078 0.474 0.071
20 10 0.280 0.043 0.465 0.042
30 15 0.330 0.039 0.509 0.039
40 20 0.341 0.032 0.506 0.033
50 25 0.351 0.036 0.524 0.028
60 30 0.353 0.045 0.516 0.038

Tabelle A.7.: Ergebnisse auf Dronology von Experiment 4 (few-shot/ multi-shot Prompting (PA3) mit
intra-projekt Datenaufteilung)
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o TL-Anzahl Fi- Fy-
Beispiel- . Fy- Fs-
in den . Standard- . Standard-
datenanzahl .. Durchschnitt . Durchschnitt .
Beispieldaten abweichung abweichung
2 1 0,379 0,049 0,578 0,050
4 2 0,400 0,054 0,591 0,058
6 3 0,413 0,060 0,601 0,063
8 4 0,419 0,046 0,607 0,056
10 5 0,428 0,037 0,609 0,058
20 10 0,433 0,043 0,592 0,056
30 15 0,451 0,045 0,585 0,067
40 20 0,473 0,054 0,621 0,055
50 25 0,498 0,054 0,621 0,061
60 30 0,493 0,061 0,621 0,069

Tabelle A.8.: Ergebnisse auf GANNT von Experiment 4 (few-shot/ multi-shot Prompting (PA3) mit
intra-projekt Datenaufteilung)

o TL-Anzahl Fi- Fy-
Beispiel- . Fi- F,-
in den . Standard- . Standard-
datenanzahl .. Durchschnitt . Durchschnitt .
Beispieldaten abweichung abweichung
2 1 0,498 0,092 0,549 0,114
4 2 0,527 0,088 0,604 0,137
6 3 0,543 0,097 0,620 0,147
8 4 0,567 0,099 0,644 0,128
10 5 0,553 0,149 0,626 0,175
20 10 0,559 0,125 0,596 0,151
30 15 0,551 0,135 0,587 0,163
40 20 0,589 0,102 0,639 0,124
50 25 0,569 0,098 0,630 0,126
60 30 0,559 0,095 0,636 0,128

Tabelle A.9.: Ergebnisse auf Modis von Experiment 4 (few-shot/ multi-shot Prompting (PA3) mit
intra-projekt Datenaufteilung)
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o TL-Anzahl Fi- Fy-
Beispiel- . Fy- F»-
in den . Standard- . Standard-
datenanzahl .. Durchschnitt ) Durchschnitt .
Beispieldaten abweichung abweichung
2 1 0.375 0.090 0.542 0.082
4 2 0.400 0.073 0.575 0.069
6 3 0.423 0.060 0.592 0.062
8 4 0.438 0.067 0.607 0.070
10 5 0.461 0.063 0.628 0.075
20 10 0.492 0.077 0.637 0.082
30 15 0.483 0.065 0.642 0.072
40 20 0.492 0.071 0.646 0.087
50 25 0.482 0.064 0.639 0.076
60 30 0.511 0.059 0.658 0.071

Tabelle A.10.: Ergebnisse auf WARC von Experiment 4 (few-shot/ multi-shot Prompting (PA3) mit
intra-projekt Datenaufteilung)

A.4. Ergianzende Materialien zu Experiment 5

TL-Anzahl
projekt- in den
interne rojekt- F;- F1- F,- Fa-
. Pre) b Standard- Zo Standard-
Trainings- internen Durchschnitt . Durchschnitt .
. abweichung abweichung
datenanzahl Trainings-
daten
32 1 0,267 0,170 0,222 0,148
64 2 0,288 0,138 0,235 0,118
128 5 0,298 0,212 0,254 0,195
256 10 0,371 0,196 0,324 0,170
512 20 0,443 0,086 0,384 0,070
{932,933} 36 0,459 0,095 0,398 0,064

Tabelle A.11.: Ergebnisse auf CM1-NASA von Experiment 5 (Feinanpassungsansatz mit intra-cross-
projekt Datenaufteilung)
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TL-Anzahl
projekt- in den
interne projekt- F;- Fi- F,- Fo-
.. . . Standard- , Standard-
Trainings- internen Durchschnitt . Durchschnitt .
. abweichung abweichung
datenanzahl Trainings-
daten
32 0 0,459 0,052 0,551 0,049
64 1 0,464 0,045 0,564 0,041
128 1 0,490 0,038 0,530 0,023
256 3 0,523 0,048 0,506 0,053
512 5 0,539 0,031 0,525 0,038
1024 11 0,500 0,064 0,450 0,079
2048 22 0,535 0,057 0,482 0,054
4096 43 0,579 0,046 0,539 0,065
8192 86 0,652 0,062 0,629 0,078
16384 173 0,714 0,047 0,698 0,046
{16711, 16712} 176 0,710 0,039 0,691 0,061

Tabelle A.12.: Ergebnisse auf Dronology von Experiment 5 (Feinanpassungsansatz mit intra-cross-

projekt Datenaufteilung)

TL-Anzahl
projekt- in den
interne rojekt- Fi- Fi- F,- Fa-
. Pro) . Standard- e Standard-
Trainings- internen Durchschnitt . Durchschnitt .
. abweichung abweichung
datenanzahl Trainings-
daten
32 2 0,357 0,152 0,316 0,143
64 4 0,285 0,124 0,253 0,115
128 7 0,321 0,132 0,285 0,152
256 15 0,328 0,118 0,303 0,117
512 {29, 30} 0,350 0,125 0,334 0,135
{938, 939} {54, 55} 0,436 0,092 0,442 0,118

TabelleA.13.: Ergebnisse auf GANNT von Experiment 5 (Feinanpassungsansatz mit intra-cross-projekt

Datenaufteilung)
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A.4. Ergdnzende Materialien zu Experiment 5

TL-Anzahl
projekt- in den
interne rojekt- Fi- Fi- F,- Fa-
.. Pre) . Standard- Z Standard-
Trainings- internen Durchschnitt . Durchschnitt .
. abweichung abweichung
datenanzahl Trainings-
daten
32 1 0,287 0,197 0,223 0,160
64 3 0,582 0,182 0,499 0,198
128 6 0,617 0,172 0,557 0,193
256 11 0,646 0,137 0,594 0,175
512 {22, 23} 0,708 0,117 0,691 0,139
{744,745} {32,33} 0,783 0,098 0,775 0,121

Tabelle A.14.: Ergebnisse auf Modis von Experiment 5 (Feinanpassungsansatz mit intra-cross-projekt

Datenaufteilung)
TL-Anzahl
projekt- in den
interne projekt- Fi- Fi- F,- Fa-
. . . Standard- . Standard-
Trainings- internen Durchschnitt . Durchschnitt .
.. abweichung abweichung
datenanzahl Trainings-
daten
32 1 0,370 0,130 0,352 0,144
64 2 0,356 0,169 0,302 0,153
128 3 0,386 0,149 0,324 0,125
256 6 0,420 0,142 0,366 0,136
512 12 0,455 0,097 0,410 0,113
1024 25 0,505 0,053 0,459 0,063
2048 {49,50} 0,565 0,086 0,526 0,088
4096 {99, 100} 0,652 0,099 0,630 0,103
{4485, 4486} {108,109} 0,631 0,078 0,615 0,091

Tabelle A.15.: Ergebnisse auf WARC von Experiment 5 (Feinanpassungsansatz mit intra-cross-projekt
Datenaufteilung)
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A.5. Erganzende Materialien zu allen Szenarien
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Abbildung A.3.: Ergebnisse aller Anséatze auf CM1-NASA - Durchschnittliche F;-Werte mit Standard-
abweichungen bzw. F;-Werte (oben) und durchschnittliche F,-Werte mit Standardabweichungen
bzw. F,-Werte (unten)
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Abbildung A.4.: Ergebnisse aller Ansétze auf Dronology - Durchschnittliche F;-Werte mit Standard-
abweichungen bzw. F;-Werte (oben) und durchschnittliche F,-Werte mit Standardabweichungen
bzw. F,-Werte (unten)

65



A. Anhang

1.0
—— zero-shot Prompting mit RAG
—— zero-shot Prompting ohne RAG
0.8 1 —— Feinanpassung mit cross-projekt DA
—&— few-shot/multi-shot Prompting mit intra-projekt DA
Feinanpassung mit intra-projekt DA
061 —— Feinanpassung mit intra-cross-projekt DA
2
0.4
\./.—ﬁ l
0.2 1 ad
0.0 — - - 7
10° 10!
TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten (Logarithmische Skala)
1.0
—— zero-shot Prompting mit RAG
—— zero-shot Prompting ohne RAG
0.8 1 —— Feinanpassung mit cross-projekt DA
—&— few-shot/multi-shot Prompting mit intra-projekt DA
Feinanpassung mit intra-projekt DA
0.6 - —— Feinanpassung mit intra-cross-projekt DA
o L
0.4 1
0.2 1
0.0 —

T T T T T T T L |
10° 10!

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten (Logarithmische Skala)

Abbildung A.5.: Ergebnisse aller Ansitze auf GANNT - Durchschnittliche F;-Werte mit Standardab-
weichungen bzw. F;-Werte (oben) und durchschnittliche F,-Werte mit Standardabweichungen bzw.
F,-Werte (unten)
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Abbildung A.6.: Ergebnisse aller Ansétze auf Modis - Durchschnittliche F;-Werte mit Standardab-
weichungen bzw. F;-Werte (oben) und durchschnittliche F,-Werte mit Standardabweichungen bzw.
F,-Werte (unten)
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Abbildung A.7.: Ergebnisse aller Ansétze auf WARC - Durchschnittliche F;-Werte mit Standardab-
weichungen bzw. F;-Werte (oben) und durchschnittliche F,-Werte mit Standardabweichungen bzw.
F,-Werte (unten)
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