
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Feinanpassung vs. Prompting: Der Fall der
Wiederherstellung von

Nachverfolgbarkeitsverbindungen

Bachelorarbeit von

Markus Bodenberger

An der KIT-Fakultät für Informatik

KASTEL – Institut für Informationssicherheit und Verlässlichkeit

1. Prüfer/Prüferin: Prof. Dr.-Ing. Anne Koziolek

2. Prüfer/Prüferin: Prof. Dr. Ralf Reussner

1. Betreuer/Betreuerin: Dr.-Ing. Tobias Hey

2. Betreuer/Betreuerin: M.Sc. Dominik Fuchß

30. Juni 2025 – 30. Oktober 2025

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

Feinanpassung vs. Prompting: Der Fall der Wiederherstellung von Nachverfolgbarkeitsverbin-
dungen (Bachelorarbeit)

Ich versichere wahrheitsgemäß, die Arbeit selbständig verfasst, alle benutzten Quellen

und Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben,

was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie

die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen

Fassung beachtet zu haben.

Karlsruhe, 30. Oktober 2025

. .

(Markus Bodenberger)

Zusammenfassung

Bei der Softwareentwicklung entstehen verschiedene Anforderungen, die zueinander in

Beziehung stehen können. Diese Beziehungen werden mit Nachverfolgbarkeitsverbindun-

gen (engl.: trace links, TLs) repräsentiert, die verschiedene Vorteile bieten, jedoch häufig

gar nicht oder inkonsistent erfasst werden. Deshalb beschäftigt sich die Forschung mit der

Wiederherstellung von TLs zwischen Anforderungen, für die es verschiedenste Ansätze gibt.

Neuere automatisierte Ansätze verwenden häufig Feinanpassung oder Prompting, da sich da-

mit oft bessere Ergebnisse erzielen lassen. Aktuell ist jedoch unklar, welche Feinanpassungs-

und Prompting-Ansätze in welchen Anwendungsfällen die beste Performance liefern, da

bislang kein umfassender Vergleich zwischen ihnen unternommen wurde.

In dieser Bachelorarbeit wird daher ein solcher Vergleich durchgeführt, um zu ermitteln,

mit welcher Anzahl an verfügbaren Projekt-TLs welcher vollautomatisierte Feinanpassungs-

und Prompting-Ansatz in welcher Situation die beste Performance erzielt. Dazu werden

vier Szenarien betrachtet, in denen die Generierung und Vervollständigung von TLs mit

und ohne die Nutzung von TLs aus anderen Projekten durchgeführt wird.

In Anwendungsfällen, in denen keine Projekt-TLs vorliegen und alle TLs generiert werden

müssen, liefert ein aktueller zero-shot Prompting-Ansatz die beste Performance, gemessen an

den 𝐹1-Werten. Sind einige Projekt-TLs vorhanden, die vervollständigt werden müssen, dann

erzielt der gleiche zero-shot Prompting-Ansatz bei wenigen vorhandenen TLs die besten

𝐹1-Werte. Wenn keine anderen Projekte mit TLs verfügbar sind, dann wird im Durchschnitt

ab ca. 45 vorhandenen Projekt-TLs Feinanpassung zum besten Ansatz, gemessen an den

𝐹1-Werten. Liegen jedoch andere Projekte vor, dann ist dies schon ab etwa 20 TLs der Fall.

Die Ergebnisse dieser Arbeit liefern Praktikern, die sich mit der Wiederherstellung von

TLs befassen, eine Orientierungshilfe bei der Auswahl des leistungsfähigsten Ansatzes und

geben Forschern zugleich Hinweise auf mögliche Erweiterungen/Verbesserungen.

i

Inhaltsverzeichnis

Zusammenfassung i

1. Einleitung 1

2. Grundlagen 3
2.1. Nachverfolgbarkeit . 3

2.1.1. Nachverfolgbarkeitsverbindungen 3

2.1.2. Wiederherstellung von Nachverfolgbarkeitsverbindungen 3

2.2. Vortrainierte Sprachmodelle . 4

2.2.1. Modellarten . 5

2.2.2. Verwendungsarten . 6

2.3. Experimentelle Grundlagen . 9

2.3.1. Datenaufteilungsstrategien . 9

2.3.2. Evaluationsmetriken . 9

3. Verwandte Arbeiten 11
3.1. Wiederherstellung von Nachverfolgbarkeitsverbindungen 11

3.1.1. Information Retrieval . 11

3.1.2. Klassisches maschinelles Lernen 12

3.1.3. Feinanpassung . 12

3.1.4. Prompting . 13

3.1.5. Vergleich von Feinanpassung und Prompting 14

3.2. Vergleich von Feinanpassung und Prompting 15

3.3. Zusammenfassung . 15

4. Analyse und Implementierung der TLR-Ansätze 17
4.1. Analyse . 17

4.1.1. Feinanpassung . 18

4.1.2. Prompting . 18

4.2. Implementierung . 19

4.2.1. Feinanpassungsansatz: BertForSequenceClassification 19

4.2.2. Prompting-Ansatz 1: zero-shot mit Retrieval-Augmented Generation 20

4.2.3. Prompting-Ansatz 2: zero-shot ohne Retrieval-Augmented Generation 21

4.2.4. Prompting-Ansatz 3: few-shot/multi-shot 21

iii

Inhaltsverzeichnis

5. Szenarienbasierte Experimente und Auswertung 23
5.1. Experimentelle Rahmenbedingungen . 23

5.1.1. Datensätze . 24

5.1.2. Hyperparameteroptimierung . 24

5.2. Szenario 1: TL-Generierung . 29

5.2.1. Experiment 1: zero-shot Prompting ohne Retrieval-Augmented Ge-

neration (Prompting-Ansatz 2) . 29

5.2.2. Auswertung . 30

5.3. Szenario 2: TL-Generierung mit optionalem Wissenstransfer 30

5.3.1. Experiment 2: Feinanpassungsansatz mit cross-projekt Datenaufteilung 31

5.3.2. Auswertung . 32

5.4. Szenario 3: TL-Vervollständigung . 33

5.4.1. Experiment 3: Feinanpassungsansatz mit intra-projekt Datenaufteilung 33

5.4.2. Experiment 4: few-shot/multi-shot Prompting (Prompting-Ansatz 3)

mit intra-projekt Datenaufteilung 35

5.4.3. Auswertung . 36

5.5. Szenario 4: TL-Vervollständigung mit optionalem Wissenstransfer 39

5.5.1. Experiment 5: Feinanpassungsansatz mit intra-cross-projekt Daten-
aufteilung . 39

5.5.2. Auswertung . 41

6. Einschränkungen und Ausblick 45
6.1. Bedrohungen der Validität . 45

6.1.1. Interne Validität . 45

6.1.2. Externe Validität . 45

6.1.3. Konstruktvalidität . 46

6.2. Limitierungen und zukünftige Arbeiten . 46

7. Fazit 49

Literatur 51

A. Anhang 55
A.1. Ergänzende Materialien zu den Datensätzen 55

A.2. Ergänzende Materialien zu Experiment 3 56

A.3. Ergänzende Materialien zu Experiment 4 59

A.4. Ergänzende Materialien zu Experiment 5 61

A.5. Ergänzende Materialien zu allen Szenarien 64

iv

Abbildungsverzeichnis

2.1. Datenfluss des BertForSequenceClassification-Modells aus transformers . . . 7

5.1. Anzahl der Wörter in den Anforderungen der Datensätze 25

5.2. mixed-projekt Datenaufteilungsstrategie . 26

5.3. Ergebnisse (𝐹1-Werte) der ersten Stufe der Hyperparameteroptimierung . . 27

5.4. Ergebnisse (𝐹1-Werte) der zweiten Stufe der Hyperparameteroptimierung . 28

5.5. cross-projekt Datenaufteilungsstrategie . 31

5.6. intra-projekt Datenaufteilungsstrategie . 33

5.7. Ablauf von Experiment 3 (Feinanpassungsansatz mit intra-projekt Daten-
aufteilung) . 34

5.8. Ergebnisse von Experiment 3 (Feinanpassungsansatz mit intra-projekt Da-
tenaufteilung) . 35

5.9. Ablauf von Experiment 4 (few-shot/multi-shot Prompting (PA3) mit intra-
projekt Datenaufteilung) . 36

5.10. Ergebnisse von Experiment 4 (few-shot/multi-shot Prompting (PA3) mit

intra-projekt Datenaufteilung) . 37

5.11. Durchschnittliche/regressierte Ergebnisse über alle Datensätze für die Aus-

wertung von Szenario 3 (TL-Vervollständigung) 38

5.12. intra-cross-projekt Datenaufteilungsstrategie 39

5.13. Ablauf von Experiment 5 (Feinanpassungsansatz mit intra-cross-projekt
Datenaufteilung) . 40

5.14. Ergebnisse von Experiment 5 (Feinanpassungsansatz mit intra-cross-projekt
Datenaufteilung) . 41

5.15. Durchschnittliche/regressierte Ergebnisse über alle Datensätze für die Aus-

wertung von Szenario 4 (TL-Vervollständigung mit optionalem Wissen-

stransfer) . 42

A.1. Anzahl der Tokens für BERT in den Anforderungen der Datensätze 55

A.2. Anzahl der Tokens für GPT-4o(-mini) in den Anforderungen der Datensätze 56

A.3. Ergebnisse aller Ansätze auf CM1-NASA 64

A.4. Ergebnisse aller Ansätze auf Dronology . 65

A.5. Ergebnisse aller Ansätze auf GANNT . 66

A.6. Ergebnisse aller Ansätze auf Modis . 67

A.7. Ergebnisse aller Ansätze auf WARC . 68

v

Tabellenverzeichnis

3.1. Übersicht der wichtigsten verwandten Arbeiten 16

5.1. Anzahl der Artefakte, Kombinationen und TLs in den Datensätzen 24

5.2. Ergebnisse von Experiment 1 (zero-shot Prompting ohne RAG (Prompting-

Ansatz 2)) und zero-shot Prompting mit RAG (Prompting-Ansatz 1) 30

5.3. Ergebnisse von Experiment 2 (Feinanpassungsansatz mit cross-projekt Da-
tenaufteilung) . 32

5.4. Ergebnisse für die Auswertung von Szenario 2 (TL-Generierung mit optio-

nalem Wissenstransfer) . 32

A.1. Ergebnisse auf CM1-NASA von Experiment 3 (Feinanpassungsansatz mit

intra-projekt Datenaufteilung) . 56

A.2. Ergebnisse auf Dronology von Experiment 3 (Feinanpassungsansatz mit

intra-projekt Datenaufteilung) . 57

A.3. Ergebnisse auf GANNT von Experiment 3 (Feinanpassungsansatz mit intra-
projekt Datenaufteilung) . 57

A.4. Ergebnisse auf Modis von Experiment 3 (Feinanpassungsansatz mit intra-
projekt Datenaufteilung) . 58

A.5. Ergebnisse auf WARC von Experiment 3 (Feinanpassungsansatz mit intra-
projekt Datenaufteilung) . 58

A.6. Ergebnisse auf CM1-NASA von Experiment 4 (few-shot/multi-shot Promp-

ting (PA3) mit intra-projekt Datenaufteilung) 59

A.7. Ergebnisse auf Dronology von Experiment 4 (few-shot/multi-shot Prompting

(PA3) mit intra-projekt Datenaufteilung) 59

A.8. Ergebnisse auf GANNT von Experiment 4 (few-shot/multi-shot Prompting

(PA3) mit intra-projekt Datenaufteilung) 60

A.9. Ergebnisse auf Modis von Experiment 4 (few-shot/multi-shot Prompting

(PA3) mit intra-projekt Datenaufteilung) 60

A.10. Ergebnisse auf WARC von Experiment 4 (few-shot/multi-shot Prompting

(PA3) mit intra-projekt Datenaufteilung) 61

A.11. Ergebnisse auf CM1-NASA von Experiment 5 (Feinanpassungsansatz mit

intra-cross-projekt Datenaufteilung) . 61

A.12. Ergebnisse auf Dronology von Experiment 5 (Feinanpassungsansatz mit

intra-cross-projekt Datenaufteilung) . 62

A.13. Ergebnisse auf GANNT von Experiment 5 (Feinanpassungsansatz mit intra-
cross-projekt Datenaufteilung) . 62

vii

Tabellenverzeichnis

A.14. Ergebnisse auf Modis von Experiment 5 (Feinanpassungsansatz mit intra-
cross-projekt Datenaufteilung) . 63

A.15. Ergebnisse auf WARC von Experiment 5 (Feinanpassungsansatz mit intra-
cross-projekt Datenaufteilung) . 63

viii

Abkürzungsverzeichnis

Commit Quelltext-Änderung (commit)

DA Datenaufteilung

FA Feinanpassungsansatz

FN Falsch negativ (false negative)

FP Falsch positiv (false positive)

HLR High-Level-Anforderung (high-level requirement)

IR Information Retrieval

Issue Fehlerbericht oder Feature-Anfrage (issue)

LLR Low-Level-Anforderung (low-level requirement)

ML Maschinelles Lernen (machine learning)

P Präzision (precision)

PA1 Prompting-Ansatz 1

PA2 Prompting-Ansatz 2

PA3 Prompting-Ansatz 3

PLM Vortrainiertes Sprachmodell (pretrained language model)

R Ausbeute (recall)

RAG Retrieval-Augmented Generation

TBD Trainings-/Beispieldaten

TL Nachverfolgbarkeitsverbindung (trace link)

TLR Wiederherstellung von Nachverfolgbarkeitsverbindungen (traceability link recovery)

TN Richtig negativ (true negative)

TP Richtig positiv (true positive)

ix

1. Einleitung

Bei der Entwicklung undWartung von Softwareprojekten entstehen verschiedene Artefakte,

wie beispielsweise Anforderungen. Diese Anforderungen können in verschiedenen Bezie-

hungen zueinanderstehen, da sie meistens nicht unabhängig voneinander sind [37]. Bei

Beziehungen zwischen High-Level-Anforderungen (engl.: high-level requirements, HLRs)
und Low-Level-Anforderungen (engl.: low-level requirements, LLRs) kann es sich beispiels-

weise um Verfeinerungen handeln [37]. Um diese Beziehungen zwischen Anforderungen

zu repräsentieren, verwendet man in der Softwareentwicklung standardmäßig TLs [14].

Werden TLs zwischen HLRs und LLRs innerhalb eines Softwareprojektes vollständig erfasst

und dokumentiert, bieten sie viele verschiedene Vorteile [30].

In der Realität werden TLs zwischen HLRs und LLRs jedoch häufig gar nicht oder nur

inkonsistent erfasst, da der Aufwand bei der manuellen Ermittlung sehr groß ist [16, 25, 30].

Aus diesem Grund beschäftigt sich die Forschung mit der automatisiertenWiederherstellung

von Nachverfolgbarkeitsverbindungen (engl.: traceability link recovery, TLR) von HLRs zu

LLRs, für die es verschiedene Ansätze gibt [18, 30]. In neueren automatisierten Ansätzen für

die TLR von HLRs zu LLRs kommen vermehrt vortrainierte Sprachmodelle (engl.: pretrained
language models, PLMs) zum Einsatz, da sie in der Regel zu besseren Ergebnissen führen

[21, 24]. Bei der Verwendung von PLMs für die TLR zwischen HLRs und LLRs kommt

entweder Feinanpassung zum Einsatz, bei der das Modell vor der Verwendung angepasst

wird, oder Prompting, bei dem das PLM ohne weitere Anpassung genutzt wird [21, 24].

Für Feinanpassung und few-shot/multi-shot Prompting werden zwangsläufig annotierte

Daten beziehungsweise Trainings-/Beispieldaten (TBD) (TLs und Nicht-TLs) benötigt, für

zero-shot Prompting hingegen nicht.

Bei der TLR treten in der Realität sehr unterschiedliche Situationen auf. Einerseits gibt

es Projekte, in denen bislang keine TLs erfasst wurden. In diesen müssen also alle TLs

ermittelt werden (TL-Generierung). Andererseits gibt es Projekte, bei denen bereits ein

Teil der TLs vorliegt und vervollständigt werden muss (TL-Vervollständigung). Zusätzlich

kann es vorkommen, dass vollständig annotierte Projekte zur Verfügung stehen, bei denen

also bereits alle TLs ermittelt wurden. Aufgrund der unterschiedlichen Voraussetzungen

der Ansatzarten können nicht alle Ansätze in allen realistischen Szenarien gleichermaßen

verwendet werden. Außerdem unterscheiden sich die verschiedenen Feinanpassungs- und

Prompting-Ansätze in ihrer Leistung. Teilweile zeigt sich dieser Leistungsunterschied auch,

wenn andere Daten zum Training oder als Beispiele in Prompts genutzt werden. Dies wirft

die zentrale Frage auf, welcher Ansatz unter welchen Bedingungen die besten Ergebnisse

liefert. Diese Frage wurde noch nicht von der Forschungsgemeinschaft beantwortet, da

1

1. Einleitung

bislang kein umfassender Vergleich zwischen aktuellen Feinanpassungs- und Prompting-

Ansätzen durchgeführt wurde. Deshalb kann ein Praktiker aktuell nicht abschätzen, welcher

Ansatz die beste Leistung in seinem Anwendungsfall bringt.

Das Hauptziel dieser Bachelorarbeit ist es daher, zu ermitteln, mit welcher TBD-Anzahl

welcher Ansatz in welchem Anwendungsszenario die beste Performance erzielt. Dazu wird

ein systematischer Vergleich zwischen Feinanpassungs- und Prompting-Ansätzen für die

TLR von HLRs zu LLRs durchgeführt. Zunächst werden geeignete Ansätze für die Unter-

suchungen ermittelt. Anschließend wird der eigentliche Vergleich in vier verschiedenen,

realistischen Szenarien durchgeführt, die unterschiedliche Anwendungssituationen der TLR

abbilden. In diesen werden TL-Generierung und TL-Vervollständigung mit und ohne die

Nutzung anderer Projekte durchgeführt. In den Experimenten der Szenarien wird, wenn

möglich, die Anzahl der verfügbaren TBD systematisch variiert und ihr Einfluss auf die

Leistung der Ansätze evaluiert. Im Anschluss werden die Ergebnisse der verschiedenen

Ansätze für jedes Szenario vergleichend ausgewertet.

Die Bachelorarbeit ist wie folgt aufgebaut: In Kapitel 2 werden wichtige Grundlagen be-

schrieben und in Kapitel 3 wird der aktuelle Forschungsstand vorgestellt. In Kapitel 4 wird

eine begründete Auswahl der TLR-Ansätze aus der Forschung vorgenommen. Zusätzlich

wird die Implementierung der ausgewählten Ansätze dargestellt. In Kapitel 5 werden die

Szenarien und Experimente beschrieben und ausgewertet. In Kapitel 6 werden Bedrohungen

der Validität und Limitierungen der Arbeit aufgezeigt. Außerdem wird ein Ausblick gege-

ben. Im abschließenden Kapitel 7 wird die Bachelorarbeit zusammengefasst und zusätzlich

werden Schlussfolgerungen gezogen.

2

2. Grundlagen

In diesem Kapitel werden Grundlagen vorgestellt, welche für das Verständnis der Bachelor-

arbeit benötigt werden. Ziel ist es, relevante Begriffe zu definieren und wichtige Konzepte

vorzustellen.

2.1. Nachverfolgbarkeit

Nachverfolgbarkeit (engl.: traceability) beschreibt die Möglichkeit, Artefakte aus der Soft-

wareentwicklung (Quelltext, Anforderungen, Testfälle, usw.) miteinander in Beziehungen

zu setzen und diese Beziehungen zu analysieren [14].

2.1.1. Nachverfolgbarkeitsverbindungen

Um diese Beziehungen zwischen Artefakten darzustellen, zu repräsentieren, zu dokumen-

tieren und zu analysieren werden in der Softwareentwicklung TLs verwendet [14]. Ein TL

verbindet immer jeweils genau zwei Artefakte miteinander [14].

TLs haben je nach Kontext und Artefakttypen unterschiedliche Bedeutungen [14, 21].

In dieser Bachelorarbeit sind ausschließlich HLRs und LLRs relevant. HLRs beschreiben

das System auf einer allgemeinen, übergeordneten Ebene [32]. LLRs werden aus HLRs

abgeleitet [32], sind deutlich spezifischer und beinhalten technische Details [32]. Sie wer-

den von der Forschungsgemeinschaft teilweise auch Designartefakt genannt [12, 24, 40].

Bei TLs zwischen HLRs und LLRs handelt es sich demnach um Verfeinerungen bzw. um

Vorgänger/Nachfolger-Beziehungen [37].

2.1.2. Wiederherstellung von Nachverfolgbarkeitsverbindungen

In der Praxis werden TLs gar nicht oder nur inkonsistent dokumentiert [16, 25]. Dies

erschwert die Nutzung und erfordert Ansätze zur nachträglichen TLR.

3

2. Grundlagen

2.1.2.1. Definition

Formal sieht diese Aufgabe wie folgt aus:

• Gegeben: Eine Menge Quellartefakte (𝑄𝑀) und eine Menge Zielartefakte (𝑍𝑀) [14,

16].

• Gesucht: Eine vollständige Menge an TLs zwischen𝑄𝑀 und𝑍𝑀 (𝑇𝐿𝑀), wobei𝑇𝐿𝑀 ⊆
𝑄𝑀 × 𝑍𝑀 [14, 16].

In der Praxis werden bei einigen Ansätzen zusätzlich noch annotierte Daten benötigt, z.B.

zum Trainieren von Modellen [24, 25]. Annotierte Daten für die TLR bestehen aus Paaren

von Quell- und Zielartefakten sowie der Information, ob zwischen diesen eine TL existiert

oder nicht.

2.1.2.2. Unterscheidungen

Die TLR kann man in verschiedene Arten unterteilen. Man kann TLs manuell, automatisiert

und semi-automatisiert ermitteln [14]. Bei der manuellen TLR ermittelt ein Mensch die TLs

[14], was sehr hohe Kosten verursachen kann [16, 30]. Bei der automatisierten TLR wird kein

Mensch benötigt, da die TLR mit automatisierten Techniken bzw. Werkzeugen durchgeführt

wird [14]. Die semi-automatisierte TLR ist eine Kombination der automatisierten und

manuellen TLR [14]. Die TLR-Ansätze, welche in dieser Arbeit untersucht werden, sind

automatisiert.

Es gibt zusätzlich eine Unterscheidung der TLR-Aufgabenart. Bei der TL-Generierung

müssen alle TLs eines Projekts ermittelt werden [24]. Bei der TL-Vervollständigung hingegen

liegt bereits eine unvollständige Menge an TLs aus dem Projekt vor und die restlichen TLs

müssen ermittelt werden [24].

2.2. Vortrainierte Sprachmodelle

PLMs sind Modelle, die Sprachstrukturen und Wahrscheinlichkeitsverteilungen innerhalb

von Texten erfassen [3, 41]. Es gibt eine große Bandbreite an verschiedenen PLMs. Im

Rahmen dieser Arbeit bezieht sich dieser Begriff jedoch ausschließlich auf Modelle, die auf

der Transformer-Architektur [41] basieren, wie z.B. BERT [8] oder GPT-3 [4].

Diese Modelle wurden bereits auf einer sehr großen Menge an Textdaten ohne manuelle

Annotation vortrainiert, wodurch sie ein allgemeines Verständnis von natürlicher Sprache

erlangten [4, 8, 25]. Das auf diese Weise erworbene Sprachverständnis kann vom Modell

auf unterschiedliche Aufgaben, wie z.B. die TLR, übertragen werden [25, 40].

4

2.2. Vortrainierte Sprachmodelle

2.2.1. Modellarten

Aus der Transformer-Architektur [41] sind verschiedene Arten von PLMs entstanden. Die

drei wichtigsten PLM-Arten verwenden unterschiedliche Teile der Architektur [26]. Encoder

verwenden den Encoder-Teil vom Transformer [41], Decoder nutzen den Decoder-Teil und

Encoder-Decoder implementieren die vollständige Architektur [26]. Letztere Modellart

ist nicht weiter relevant für diese Bachelorarbeit, da sie hauptsächlich für Text-zu-Text

Aufgaben, wie z.B. Übersetzung, verwendet wird [41].

2.2.1.1. Encoder

Encoder erstellen eine kontextuelle Repräsentation von Texten [8]. Sie werden für verschie-

dene Aufgaben wie Lückenfüllung in Texten, Textklassifikation und Vorhersage nächster

Sätze genutzt [8, 36, 43].

Bei der Verwendung von Encodern wird der Text zuerst in Tokens (Wörter, Wörterpräfixe,

Wörtersuffixe, Wortteile, Buchstaben, Satzzeichen, usw.) umgewandelt [41]. Diese Tokens

besitzen Vektorrepräsentationen, welche an das Modell übergeben und mit Positionsinfor-

mationen kombiniert werden [41]. Nachdem das Modell durchlaufen wurde, gibt es für jeden

Token einen Vektor aus, welcher die Bedeutung des Tokens im Kontext des Eingabetexts

beschreibt [8].

Beim BERT-Modell (Encoder) [8], welches unter anderem in dieser Arbeit verwendet wird,

gibt es spezielle Token, welche nicht aus dem Eingabetext extrahiert werden [8]. Diese

werden beispielsweise für die Textklassifikation (CLS-Token), zum Beenden oder Abtrennen

von Textsegmenten (SEP-Token) oder für das Auffüllen von zu kurzen Texten (PAD-Token)

verwendet [8]. Zusammen kann man bei BERT [8] maximal 512 Tokens übergeben [8].

2.2.1.2. Decoder

Decoder sind autoregressive Modelle, welche für die Texterzeugung genutzt werden [4, 41].

Da verschiedene Aufgaben als Text formuliert werden können, kann man Decoder auch für

die Lösung verschiedener anderer Aufgaben nutzen [4, 39].

Für die Nutzung vonDecodernwird der Prompt (Eingabetext mit der Aufgabenbeschreibung)

ebenfalls zuerst in Tokens und dann in Vektorrepräsentationen umgewandelt [4, 41]. Diese

Repräsentationen werden auch wieder mit Positionsinformationen kombiniert und dann

dem Modell als vorherige Ausgabe übergeben [4, 39, 41]. Das Modell ermittelt dann ein

nächstes Token [4, 41]. Welches Token ausgewählt wird, hängt nicht nur von den vorherigen

Tokens ab, sondern auch von anderen Faktoren, wie dem Zufallswert (engl.: random seed)
[35]. Das ermittelte Token wird danach an den Prompt angefügt und dem Modell als neue

vorherige Ausgabe übergeben [4, 41]. Dies wird so lange wiederholt, bis das Modell ein

End-Of-Text-Token auswählt [4].

5

2. Grundlagen

Die GPT-4o- und GPT-4o-mini-Modelle, welche in dieser Bachelorarbeit genutzt werden,

ermöglichen die Verwendung von maximal 128.000 Tokens, wobei das Modell selbst die

Ausgabe von maximal 16.384 Tokens erlaubt [34].

2.2.2. Verwendungsarten

Es gibt unterschiedliche Arten wie man PLMs nutzen kann [4, 8]. In dieser Bachelorarbeit

wird zwischen Feinanpassung und Prompting unterschieden.

2.2.2.1. Feinanpassung

Bei der Feinanpassung (engl.: fine-tuning) wird ein PLM nicht direkt genutzt, sondern zuerst

mit aufgaben- und/oder domänenspezifischen Daten an eine spezielle Zielaufgabe angepasst

[8, 38]. Danach wird das angepasste Modell zur Lösung dieser Aufgabe verwendet [8, 25,

38].

Es gibt verschiedene Feinanpassungsansätze, welche unterschiedlich funktionieren [8, 22,

23, 27, 38]. Bei aktuell vorhandenen Ansätzen werden der Modellaufbau angepasst [22, 25],

die Modellparameter aktualisiert [8, 25, 38] und/oder die Eingabedaten generisch verändert

[23].

Um Feinanpassung durchführen zu können, wird ein Modell benötigt, welches auf einem

PLM basiert [8, 24, 25]. In dieser Bachelorarbeit ist das Modell BertForSequenceClassificati-
on aus der Python-Bibliothek transformers relevant. Der Datenfluss dieses Modells ist in

Abbildung 2.1 dargestellt. Es eignet sich für Feinanpassung von Textklassifikation [24, 25].

An das Modell übergibt man die Text-Tokens (Ermittelten Tokens eines Textes), welche

mit einem CLS-Token am Anfang und einem SEP-Token und möglichen PAD-Tokens am

Ende ergänzt werden [25]. Zuerst wird ein beliebiges BERT-Modell [8] durchlaufen [24, 25].

Anschließend wird die Ausgabe des CLS-Tokens des BERT-Modells [8] mit einer dichten

neuronalen Schicht gebündelt (engl.: pooling) [25]. Die gebündelte Ausgabe wird danach

mit einer Klassifikationsschicht auf einen 𝑛-dimensionalen Vektor reduziert und mit An-

wendung der Softmax-Funktion in 𝑛-Klassenwahrscheinlichkeiten umgewandelt [25]. Die

Klasse mit der höchsten Wahrscheinlichkeit ist das Klassifikationsergebnis [25].

Für die eigentliche Feinanpassung müssen neben der Modellwahl verschiedene andere

Festlegungen getroffen werden [24, 25]. Eine benötigte Festlegung ist die Verlustfunktion

[25]. Diese wird für die Berechnung und Minimierung des Trainingsfehlers benutzt. Bei Bert-
ForSequenceClassification kommt standardmäßig der Cross-Entropy-Loss als Verlustfunktion
für binäre Klassifikation zum Einsatz:

𝐿 = − 1

𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)] ,

wobei 𝑁 die Anzahl annotierter Trainingsdaten, 𝑦 ∈ {0, 1} das wahre Label und 𝑦 ∈ (0, 1)
die vorhergesagte Wahrscheinlichkeit darstellt [24, 25].

6

2.2. Vortrainierte Sprachmodelle

CLS-Token Text-Tokens SEP-Token

Kontextvektor

des CLS-Token

.

Gebündelter CLS-Token Kontextvektor

𝑛-dimensionaler Klassifikationsvektor

𝑛-Klassenwahrscheinlichkeiten

BERT-Modell [8]

dichte neuronale Schicht

Klassifikationsschicht

Softmax-Funktion

Abbildung 2.1.: Datenfluss des BertForSequenceClassification-Modells aus der Python-Bibliothek

transformers - Modell für Textklassifikation - 𝑛 entspricht der Klassenanzahl

Zusätzlich sollten die wichtigsten Hyperparameter festgelegt werden [6, 25]. Dies sind

Parameter, welche den Trainingsprozess beeinflussen, aber nicht zu den eigentlichen Mo-

dellparametern gehören. Wichtige Hyperparameter sind folgende:

• Anzahl an Trainingsepochen (engl.: number of training epochs): Dieser Parameter gibt

an, wie oft der Trainingsdatensatz während des Trainings durchlaufen wird. Wenn

dieser Parameter zu niedrig gewählt wird, dann kann es zu Unteranpassung (engl.:

underfitting) kommen, wobei das Modell die Daten nicht gut genug lernt. Wenn dieser

Parameter zu hoch gewählt wird, dann kann es zu Überanpassung (engl.: overfitting)
kommen, wobei sich das Modell zu stark an die Trainingsdaten anpasst und deswegen

bei ungesehenen Daten verschätzt.

• Lernrate (engl.: learning rate): Dieser Parameter legt fest, wie groß die Veränderungs-

schritte der Modellparameter in jedem Trainingsschritt sind. Wenn dieser Parameter

zu niedrig gewählt wird, dann kann das Training sehr lange dauern. Wenn dieser Para-

meter zu groß gewählt wird, dann kann die Modellkonfiguration mit dem minimalen

Verlust in jedem Schritt übersprungen werden, wodurch der Verlust möglicherweise

nicht reduziert wird.

• Gewichtsverfall (engl.: weight decay): Dieser Parameter schränkt die Modellkapazität

ein, indem große Modellparameter zu einem höheren Verlust führen. Wenn dieser

7

2. Grundlagen

Parameter zu niedrig gewählt wird, dann kann es zu Überanpassung kommen. Wenn

dieser Parameter zu groß gewählt wird, dann kann es zu Unteranpassung kommen.

• Anzahl an Trainingsdaten pro Trainingsschritt pro Gerät (engl.: per device train batch
size): Dieser Parameter gibt an, wie viele Trainingsdaten in jedem Trainingsschritt auf

jedem Gerät (Prozessor oder Grafikkarte) genutzt werden. Wenn dieser Parameter zu

niedrig gewählt wird, dann können die Modellparameterveränderungen rauschbehaf-

tet sein, wodurch das Training länger dauern kann. Wenn dieser Parameter zu groß

gewählt wird, dann kann das Training möglicherweise nicht ausgeführt werden, da

der vorhandene Grafikspeicher eventuell überschritten wird.

Die Festlegung der Hyperparameter findet mittels der Hyperparameteroptimierung statt

[6]. Für diese legt man eine Optimierungsstrategie fest, welche dazu genutzt wird, die

Hyperparameter zu ermitteln, welche die besten Ergebnisse liefern [6]. Eine relevante Op-

timierungsstrategie ist Grid Search, wobei man eine Menge Hyperparameter und jeweils

zugehörige Werte, welche überprüft werden sollen, nutzt [6]. Bei Grid Search werden die

optimalen Hyperparameter ermittelt, indem alle möglichen Kombinationen aus den zuge-

hörigen Werten getestet und die Hyperparameterkombination mit den besten Ergebnissen

ausgewählt werden [6].

Zusätzlich kann eine Stichprobenstrategie (engl.: sampling strategy) verwendet werden [25].

In dieser Bachelorarbeit ist die Strategie Dynamic Random Negative Sampling relevant, da

ein Ungleichgewicht zwischen den Klassen vorliegt und dieses mit dieser Strategie ausgegli-

chen werden kann [25]. Außerdem führt diese Strategie dazu, dass die Trainingsdauer pro

Trainingsepoche stark reduziert wird, da beim Dynamic Random Negative Sampling in jeder

Trainingsepoche nicht alle Daten benutzt werden, sondern alle Daten aus der kleineren

Klasse und eine gleiche Anzahl zufällig ausgewählte Daten aus der größeren Klasse [25].

2.2.2.2. Prompting

Beim Prompting wird ein Decoder-PLM ohne weitere Anpassung des Modells verwendet,

indem man die zu lösende Aufgabe in einen Prompt einbaut, an das PLM übergibt und einen

Antworttext vom Modell erhält [11, 40].

Es existieren verschiedene Prompting-Techniken, welche teilweise miteinander kombiniert

werden können [40]. Bei der Chain-of-Thought-Technik wird das Decoder-Modell beispiels-

weise dazu aufgefordert, seinen Denkprozess auszugeben, bevor es eine Antwort auf die

Aufgabenstellung liefert [11, 21, 40]. Eine andere Technik heißt few-shot bzw. multi-shot
Prompting [4]. Dabei enthält der Prompt zusätzlich zur Aufgabenstellung auch Beispiel-

lösungen der Aufgabe [4]. Im Gegensatz dazu wird beim zero-shot Prompting nur die

Aufgabenstellung übergeben [4].

8

2.3. Experimentelle Grundlagen

2.3. Experimentelle Grundlagen

Für das Verständnis der Durchführung und Auswertung der Experimente dieser Bache-

lorarbeit wird zusätzliches Wissen über die genutzten Datenaufteilungsstrategien und

verwendeten Evaluationsmetriken benötigt.

2.3.1. Datenaufteilungsstrategien

Einige Experimente in dieser Bachelorarbeit benötigen eine Aufteilung der Daten, da teilwei-

se sowohl TBD als auch Testdaten benötigt werden. Diese Mengen müssen unterschiedliche

Daten enthalten [6]. Grund dafür ist, dass die Ergebnisse sonst verfälscht werden, da ein

PLM bei gesehenen Daten deutlich bessere Ergebnisse liefert als bei unbekannten Daten.

Es gibt verschiedene Strategien für die Datenaufteilung (DA) [6]. Einerseits kann jedes

Projekt/jeder Datensatz einzeln betrachtet und aufgeteilt werden [6]. Hierbei muss zwi-

schen stratifizierter und nicht-stratifizierter Aufteilung unterschieden werden [6]. Bei der

stratifizierten DA sind die Klassenverhältnisse in allen Aufteilungsmengen gleich und bei

der nicht-stratifizierten DAmüssen diese nicht zwangsweise gleich sein [6]. Andererseits be-

steht die Möglichkeit, dass die Projekte entweder durchmischt oder einzeln als Aufteilungen

betrachtet werden [6].

Darüber hinaus kann bei der DA eine Kreuzvalidierung durchgeführt werden [6]. Anstatt

eine feste Test- und TBD-Menge zu verwenden, wird das Experiment mehrfach wieder-

holt, sodass jede Teilmenge der Daten einmal als Testmenge dient [6]. Bei Verwendung

der Kreuzvalidierung wird die Performance ermittelt, indem der Durchschnitt von jeder

einzelnen Evaluationsmetrik gebildet wird [6].

2.3.2. Evaluationsmetriken

Für die Auswertung und Bewertung der Experimente werden verschiedene Metriken ver-

wendet. Da es sich bei der TLR um eine binäre Klassifikationsaufgabe handelt, können

folgende Metriken direkt nach den Experimenten ermittelt werden:

• Richtig positiv (engl.: true positive, TP): Anzahl der Daten, welche vom TLR-Ansatz

als TL klassifiziert wurden und in Wirklichkeit eine TL haben.

• Falsch positiv (engl.: false positive, FP): Anzahl der Daten, welche vom TLR-Ansatz als

TL klassifiziert wurden und in Wirklichkeit keine TL haben.

• Richtig negativ (engl.: true negative, TN): Anzahl der Daten, welche vom TLR-Ansatz

als Nicht-TL klassifiziert wurden und in Wirklichkeit keine TL haben.

• Falsch negativ (engl.: false negative, FN): Anzahl der Daten, welche vom TLR-Ansatz

als Nicht-TL klassifiziert wurden und in Wirklichkeit eine TL haben.

9

2. Grundlagen

Die zuvor angegebenen Metriken werden nicht für den direkten Vergleich zwischen TLR-

Ansätzen genützt, da diese nur absolute und nicht relative Ergebnisse darstellen. Aus diesem

Grund werden aus den oben angegebenen Metriken folgende Metriken abgeleitet, welche

oft für die Bewertung von TLR-Ansätzen in der Forschung verwendet werden [11, 21, 24,

25]:

• Präzision (engl.: precision, P): 𝑃 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

Die Präzision gibt relativ an, wie viele als TL klassifizierte Daten in Wirklichkeit

TL haben. Diese Metrik ist wichtig, da der Entwickler bei einer niedrigen Präzision

das Vertrauen in die Klassifikation verliert und als TL klassifizierte Daten manuell

überprüfen muss.

• Ausbeute (engl.: recall, R): 𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

Die Ausbeute gibt relativ an, wie viele der Daten, welche inWirklichkeit eine TL haben,

auch vom TLR-Ansatz erkannt wurden. Diese Metrik ist wichtig, da der Entwickler

bei einer niedrigen Ausbeute möglicherweise wichtige Zusammenhänge übersieht, da

eventuell wichtige TLs nicht vom TLR-Ansatz erkannt wurden.

• 𝐹𝛽-Metrik: 𝐹𝛽 = (1 + 𝛽2) · 𝑃 ·𝑅
𝛽2·𝑃+𝑅

Die 𝐹𝛽-Metrik kombiniert die Präzision und die Ausbeute. Mit 𝛽 wird angegebenen, wie

wichtig die Ausbeute im Vergleich zur Präzision ist. Wenn 𝛽 = 1, ist die Ausbeute gleich

gewichtet wie die Präzision und in diesem Fall handelt es sich um den harmonischen

Durchschnitt der beiden Werte. Diese Metrik ist wichtig, da sowohl die Präzision als

auch die Ausbeute wichtig für die TLR ist [21]. In dieser Arbeit sind sowohl die 𝐹1- als

auch die 𝐹2-Werte relevant, da diese beiden 𝐹𝛽-Werte meistens für die Bewertung von

TLR-Ansätzen in der Forschung verwendet werden [9, 11, 33].

10

3. Verwandte Arbeiten

In diesem Kapitel werden wissenschaftliche Veröffentlichungen vorgestellt, die im Zu-

sammenhang mit dieser Bachelorarbeit stehen. Ziel ist es, den aktuellen Forschungsstand

vorzustellen, meine Bachelorarbeit von ähnlichen Arbeiten abzugrenzen und dadurch die

aktuell bestehende Forschungslücke aufzuzeigen.

3.1. Wiederherstellung von Nachverfolgbarkeitsverbindungen

Für die TLR gibt es verschiedenste Ansätze, welche mit der Zeit von der Forschung immer

weiter entwickelt wurden.

3.1.1. Information Retrieval

Anfänglich lag der Schwerpunkt der TLR-Forschung auf Information Retrieval (IR), wobei

versucht wird, TLs anhand textueller Ähnlichkeiten zu erkennen [16]. Dies zeigt sich exem-

plarisch an Veröffentlichungen wie Antoniol u. a. [2] und Hayes, Dekhtyar und Sundaram

[17].

Mit der Zeit wurden diese Ansätze immer weiter verbessert und/oder erweitert. Zum Beispiel

erstellten Moran u. a. [31] Comet. Dies ist ein TLR-Ansatz, welcher ein bayesianisches

hierarchisches Modell in Kombination mit verschiedenen IR-Ansätzen verwendet. Es zeigte

sich, dass die Leistung von Comet, verglichen mit einzelnen IR-Ansätzen, besser ist.

Ein anderer IR-Ansatz wurde von Hey u. a. [20] erstellt. Sie entwarfen den FTLR-Ansatz,

welcher für die TLR von Anforderungen zu Quelltext entwickelt und getestet wurde. Bei

diesem Ansatz teilten die Autoren die Artefakte in Teile (Sätze/Methoden) auf, ermittelten

Vektoren mittels Worteinbettungen und bestimmten damit die Ähnlichkeit der Artefaktteile.

Für die Bestimmung der Ähnlichkeit wurde als Funktion nicht die häufig verwendete

Kosinus-Ähnlichkeit, sondern dieWord Mover’s Distance genutzt. Danach wurde für jede

Methode der ähnlichste Satz aus jeder Anforderung ermittelt, mit einem unteren Grenzwert

gefiltert und TL-Kandidaten pro Klasse durch Mehrheitsentscheid aggregiert. Diese TL-

Kandidaten wurden anschließend mit einem unteren Ähnlichkeitsgrenzwert gefiltert. Sie

zeigten, das FTLR bessere Ergebnisse erzielt, als vorhandene Ansätze, welche ebenfalls

keine Trainingsdaten benötigen. Zusätzlich zeigte Hey [18], dass sowohl die genutzte

Aufteilung und Aggregation als auch die verwendete Ähnlichkeitsfunktion die Leistung

signifikant verbesserten. Später konnte der FTLR-Ansatz noch von Hey, Keim und Corallo

11

3. Verwandte Arbeiten

[19] verbessert werden, indem die Anforderungen unter anderemmit einem feinangepassten

PLM vorgefiltert wurden.

Ein weiterer IR-Ansatz namens TRIAD wurde von Gao u. a. [12] ebenfalls für die TLR von

Anforderungen zu Quelltext entworfen. Die Autoren verwendeten LLRs als Zwischenar-

tefakte. Aus den Quell-, Zwischen- und Zielartefakten wurden Wortpaare extrahiert und

in die Quell- und Zielartefakte eingesetzt. Zusätzlich nutzten sie transitive TLs (indirekte

Verbindungen über Zwischenartefakte) für die Ermittlung von den TLs. Auch Gao u. a. [12]

zeigten eine Verbesserung der Performance verglichen mit anderen IR-Ansätzen.

3.1.2. Klassisches maschinelles Lernen

Neben dem IR wurden auch maschinelles Lernen (engl.: machine learning, ML) für die TLR

verwendet [16]. Im großen Unterschied zu den IR-Ansätzen benötigen diese annotierte Daten

zum Trainieren. Guo, Cheng und Cleland-Huang [15] trainierten und verwendeten bei-

spielsweise rekurrente neuronale Netze für die TLR. Dabei lieferte dieser Ansatz signifikant

bessere Ergebnisse als vorhandene IR-Ansätze, welche zu der Zeit führend waren.

Ein anderer ML-Ansatz namens TRAIL wurde von Mills, Escobar-Avila und Haiduc [29]

entworfen. Die Autoren ermittelten für jeden möglichen TL unterschiedliche Merkmale,

womit verschiedene Modelle trainiert wurden. Dabei zeigte sich, dass das Random Forest-
Modell für diesen Ansatz am besten geeignet ist und das verschiedene IR-Ansätze in der

Leistung deutlich übertroffen werden konnten. Später verbesserten Mills u. a. [30] diesen

Ansatz, indem sie durch aktives Lernen (engl.: active learning) die Anzahl der benötigten
Trainingsdaten verringerten.

In dieser Bachelorarbeit wird kein IR- und ML-Ansatz in den Vergleich mit eingebunden, da

sich zeigte, dass PLM-basierte Ansätze meist bessere Ergebnisse liefern [1, 11].

3.1.3. Feinanpassung

Eine Gruppe von PLM-basierten Ansätzen, welche annotierte Daten zum Trainieren benöti-

gen, verwenden Feinanpassung.

Lin u. a. [25] veröffentlichten eine Publikation dazu. Sie entwarfen und untersuchten

das T-BERT-Framework mit drei Feinanpassungsansätzen, wobei die Quellartefakte Feh-

lerberichte und Feature-Anfragen (engl.: issues, Issues) und die Zielartefakte Quelltext-

Änderungen (engl.: commits, Commits) waren. Dabei kam heraus, dass die evaluierte Single-

BERT-Variante die besten Ergebnisse liefert und die Siamese-BERT-Variante das beste

Leistung/Kosten-Verhältnis hat.

Feinanpassungsansätze wurden ebenfalls von Lin u. a. [24] für ihre wissenschaftliche Veröf-

fentlichung untersucht. Es wurden fünf Ansätze für die TLR von HLRs zu LLRs getestet,

welche unterschiedliche Transferlernansätze für ein Zwischentraining nutzen. Lin u. a. [24]

fanden dabei heraus, dass das Task-CLS-Modell, welches auf dem Single-BERT-Modell

12

3.1. Wiederherstellung von Nachverfolgbarkeitsverbindungen

von Lin u. a. [25] aufbaut, die besten Ergebnisse liefert. Außerdem ermittelten sie, dass das

BERT-Modell [8] als Grundlage bei der Vervollständigung von TLs am besten funktioniert.

Auch Majidzadeh, Ashtiani und Zakeri-Nasrabadi [28] verwendeten Feinanpassung für die

TLR. Sie kombinierten Feinanpassung eines Modells mit verschiedenen Datenaugmentie-

rungstechniken und testeten es auf der TLR von Dokumentationen zu Methoden, von Issues

zu Commits und von Issues zu Methoden. Sie fanden heraus, dass ihr Ansatz besser ist als

verfügbare Ansätze, wie z.B. auch T-BERT von Lin u. a. [25].

Sowohl Deng u. a. [7] als auch Wang u. a. [43] verwendeten einen anderen Ansatz für die

TLR von Issues zu Commits. Die Autoren der beiden Publikationen lösten die TLR mit einer

Lückentextaufgabe und bauten die Textlücke in verschiedene Prompts ein. Dazu testeten sie

eine Trainingsstrategie, bei welcher leichtes Rauschen in die Eingabe mit einfließt. Es zeigte

sich, dass die Trainingsstrategie zu besseren Ergebnissen führt. Zugleich ermittelten sie,

dass die Mittelung der Ergebnisse der einzelnen Prompts die beste Leistung erbringt. Beim

Vergleich mit anderen Ansätzen zeigte dieser Ansatz signifikant bessere Ergebnisse.

Nur eine Publikation untersuchte bis jetzt die TLR zwischenAnforderungen. Dazu verglichen

alle zuvor genannten Veröffentlichungen ihre Ansätze auch nicht mit Prompting.

3.1.4. Prompting

Prompting ist ein anderer Ansatz, welcher auf PLMs basiert. Auch Prompting wurde wie

Feinanpassung schon mehrfach von der Forschungsgemeinschaft für die TLR verwendet

und untersucht.

Rodriguez, Dearstyne und Cleland-Huang [40] testeten verschiedene Prompting-Techniken

für die TLR von HLRs zu LLRs, von Anforderungen zu Klassen und von LLRs zu Klassen

systematisch. Betrachtet wurden unterschiedliche sortierungs- und klassifikations-basierte

Ansätze. Dabei stellte sich heraus, dass klassifikations-basierte Ansätze besser funktionieren

als sortierungs-basierte Ansätze. Bei den klassifikations-basierten Ansätzen zeigte sich, dass

die Chain-of-Thought-Technik leicht bessere Ergebnisse liefert als die anderen untersuchten

Techniken.

Fuchß u. a. [11] untersuchten ebenfalls Prompting und erstellten das LiSSA-Framework. Sie

erweiterten Prompting mit Retrieval-Augmented Generation (RAG) und überprüften diesen

Ansatz auf der TLR vonAnforderungen zu Quelltext, von Dokumentationen zu Quelltext und

von Dokumentationen zu Modellen. Geprüft wurden nur klassifikations-basierte Prompting-

Ansätze, welche aus den Ergebnissen von Rodriguez, Dearstyne und Cleland-Huang [40]

abgeleitet wurden. Bei der Untersuchung wurde ersichtlich, dass hier auch die Chain-of-
Thought-Technik bessere Ergebnisse liefert und dass ihr Ansatz im Durchschnitt besser ist

als andere Ansätze, welche zu der Zeit führend waren. Hey u. a. [21] arbeiteten mit den

Ergebnissen von Fuchß u. a. [11] weiter. Der Ansatz von Fuchß u. a. [11] wurde in dieser

Veröffentlichung für die Wiederherstellung von TLs zwischen HLRs und LLRs getestet.

Auch hier zeigte sich, dass die Chain-of-Thought-Technik zu besseren Ergebnissen führt

und dass der Ansatz besser ist als andere Ansätze, welche zu der Zeit führend waren.

13

3. Verwandte Arbeiten

Niu u. a. [33] nutzten einen anderen RAG-Ansatz in Kombination mit Prompting wie Fuchß

u. a. [11] und Hey u. a. [21]. Bei dieser Untersuchung wurde die Wiederherstellung und

Validierung von TLs zwischen HLRs und LLRs von Kraftfahrzeugsystemen betrachtet. Der

Fokus lag eher auf der Validierung als auf der Wiederherstellung, weswegen keine große

Auswertung von der TLR-Performance stattfand.

Auch Fuchß u. a. [10] verwendeten den Ansatz von Fuchß u. a. [11] und Hey u. a. [21] als

Grundlage und ersetzten den bisherigen Retrieval-Schritt durch ein mehrstufiges Filter-

verfahren, bei dem Prompting auf kleinen Decoder-PLMs durchgeführt wird. Sie testeten

ihren Ansatz für die TLR von HLRs zu LLRs. Sie zeigten, dass die verkettete Filterung am

besten funktioniert. Mit dieser Filterart konnten sie aktuelle IR-Ansätze in der Performance

schlagen, aber nicht den ursprünglichen Ansatz von Fuchß u. a. [11] und Hey u. a. [21].

In dieser Bachelorarbeit führe ich im Unterschied zu Fuchß u. a. [10, 11], Hey u. a. [21], Niu

u. a. [33] und Rodriguez, Dearstyne und Cleland-Huang [40] einen Vergleich mit einem

Feinanpassungsansatz durch.

3.1.5. Vergleich von Feinanpassung und Prompting

Im Kontrast zu den vorherigen Publikationen evaluierten und verglichen zwei Veröffentli-

chungen sowohl Feinanpassung als auch Prompting für die TLR.

Bei der Arbeit von Etezadi u. a. [9] wurde Kashif und RICE für die TLR von Anforderungen

zu gesetzlichen Vorschriften untersucht. Kashif ist ein Feinanpassungsansatz, welcher ein

modifiziertes BERT Modell [8] verwendet, und RICE ist ein few-shot Prompting-Ansatz. Die

Auswertung zeigte, dass RICE generell deutlich bessere Ergebnisse liefert als Kashif.

Auch Ge u. a. [13] verglichen die beiden Ansatzarten miteinander, wobei aber der Haupt-

fokus auf der Feinanpassung lag. Sie führten die TLR von HLRs zu LLRs auf zehn Daten-

sätzen durch, wobei vier Datensätze unterschiedlich aus den anderen sechs Datensätzen

zusammengesetzt wurden. Ge u. a. [13] variierten mit dem eingesetzten Modell, der ver-

wendeten Feinanpassungsstrategie und dem genutzten Prompt. Außerdem verwendeten sie

verschiedene Zusammenfassungs- und Datenaugmentierungstechniken. Beim Vergleich

zwischen Prompting und Feinanpassung variierten die Autoren aber nicht mit der Anzahl

annotierter Daten innerhalb der Datensätze, sondern verwendeten stattdessen eine fes-

te Datenaufteilung. Bei ihnen zeigte sich, dass die Verwendung von Zusammenfassungs-

und Datenaugmentierungstechniken zu besseren Ergebnissen führt. Dazu ermittelten sie,

dass der Feinanpassungsansatz Prompt-Tuning [23] in Kombination mit dem genutzten

7B-LLaMA-Modell der beste Ansatz ist. Anders als bei Etezadi u. a. [9] war bei Ge u. a. [13]

der Feinanpassungsansatz also besser als Prompting.

In Abgrenzung zu der Arbeit von Etezadi u. a. [9] werden in dieser Bachelorarbeit die

TLR von HLRs zu LLRs und zero-shot Prompting betrachtet. Im Gegensatz zu Ge u. a. [13]

wird auch few-shot/multi-shot Prompting mit in den Vergleich einbezogen. Des Weiteren

grenzt sich diese Bachelorarbeit von beiden Arbeiten ab, indem systematisch Prompting

und Feinanpassung mit unterschiedlicher Anzahl annotierter Daten verglichen wird.

14

3.2. Vergleich von Feinanpassung und Prompting

3.2. Vergleich von Feinanpassung und Prompting

Feinanpassung und Prompting wurden nicht nur für die TLR untersucht, sondern auch für

eine Vielzahl anderer Aufgaben.

So verglichen beispielsweise Chen, Yi und Varró [5] beide Ansätze bei der Erstellung von

Taxonomien auf zwei Datensätzen unterschiedlicher Größe. Ein Datensatz ist domänenun-

abhängig und umfasst Taxonomien mit „ist-ein“-Beziehungen (WordNet) und der andere

Datensatz bildet hierarchische Beziehungen zwischen Informatik-Konzepten ab (ACM CCS).

Prompting lieferte bei dem kleineren Datensatz (WordNet) deutlich bessere Ergebnisse, weil

dort weniger Trainingsdaten verfügbar waren. Bei dem größeren Datensatz (ACM CCS)

wurden hingegen gleich gute Ergebnisse wie Feinanpassung erzielt.

Auch bei Pecher, Srba und Bielikova [36] wurde ein ähnlicher Zusammenhang sichtbar,

diesmal bei verschiedenen Textklassifikationsaufgaben auf acht Datensätzen, die sowohl

binäre Klassifikationen (z.B. Erkennung grammatikalischer Korrektheit von Sätzen) als auch

Mehrklassenklassifikationen (z.B. Klassifikation von Fragearten) umfassten. Ihr Vergleich

ergab, dass Feinanpassung ab durchschnittlich 30 annotierten Daten bessere Ergebnisse

erzielt als zero-shot Prompting und ab durchschnittlich 100 annotierten Daten auch besser

wird als few-shot Prompting. Dazu stellten Pecher, Srba und Bielikova [36] fest, dass die

Ergebnisse stark vom verwendeten Datensatz abhängen.

Ein weiterer Vergleich wurde von Walsh u. a. [42] durchführt und veröffentlicht. Sie unter-

suchten Feinanpassung und few-shot Prompting im Kontext der Bewertung von Kurzant-

worten. Bei ihnen zeigte sich eine deutliche Verbesserung von Feinanpassung gegenüber

few-shot Prompting schon ab ca. 150 Trainingsdaten beim GPT-4o-mini-Modell.

Insgesamt verdeutlichen die Ergebnisse, dass Feinanpassung mit wachsender Anzahl anno-

tierter Daten besser wird und ab einer gewissen Anzahl auch besser wird als Prompting.

3.3. Zusammenfassung

Die wichtigsten verwandten Arbeiten sind zusammengefasst in Tabelle 3.1 dargestellt.

Hierbei handelt es sich um Veröffentlichungen, welche Feinanpassung und/oder Prompting

für die TLR nutzten. Es gibt jeweils fünf Veröffentlichungen, welche nur Feinanpassung oder

nur Prompting untersuchten. Nur zwei Publikationen untersuchten sowohl Feinanpassung

als auch Prompting. Feinanpassung wurde bei zwei verwandten Arbeiten für die TLR von

HLRs zu LLRs, welche in dieser Arbeit untersucht wird, evaluiert. Prompting evaluierten

fünf verwandte Publikationen für die TLR von HLRs zu LLRs.

15

3. Verwandte Arbeiten

Veröffentlichung TL-Typen Feinanpassung Prompting

Lin u. a. [25] Issue → Commit ✓

Lin u. a. [24] HLR → LLR ✓

Majidzadeh, Ashtiani

und Zakeri-Nasrabadi

[28]

Dokumentation → Methode

Issue → Commit

Issue → Methode

✓

Deng u. a. [7] Issue → Commit ✓

Wang u. a. [43] Issue → Commit ✓

Rodriguez, Dearstyne

und Cleland-Huang

[40]

HLR → LLR

Anforderung → Klasse

LLR → Klasse

✓

Fuchß u. a. [11] Anforderung → Quelltext

Dokumentation → Quelltext

Dokumentation→ Modell

✓

Hey u. a. [21] HLR → LLR ✓

Niu u. a. [33] HLR → LLR ✓

Fuchß u. a. [10] HLR → LLR ✓

Etezadi u. a. [9] Anforderung → gesetzliche Vorschrift ✓ ✓

Ge u. a. [13] HLR → LLR ✓ ✓

Tabelle 3.1.: Übersicht der wichtigsten verwandten Arbeiten

16

4. Analyse und Implementierung der
TLR-Ansätze

Das zentrale Ziel dieser Bachelorarbeit besteht darin, zu ermitteln, unter welchen Bedin-

gungen man eher Feinanpassung oder eher Prompting für die TLR von HLRs zu LLRs

verwenden sollte. Um dieses Ziel erreichen zu können, werden für den Vergleich zuerst

Prompting- und Feinanpassungs-TLR-Ansätze benötigt. Von den in Kapitel 3 vorgestellten

TLR-Ansätzen aus der Forschung für Feinanpassung und Prompting können aber nicht

alle mit in den Vergleich einbezogen werden, da dies einerseits den Rahmen dieser Arbeit

überschreiten würde und da anderseits nicht alle gefundenen Ansätze für die TLR von HLRs

zu LLRs eingesetzt werden können.

Aus diesem Grund wird in diesem Kapitel eine Analyse der vorhandenen Ansätze und

eine begründete Auswahl der TLR-Ansätze vorgenommen. Dafür werden zunächst die

Kriterien, welche für die Ansatzwahl genutzt werden, aufgezeigt. Danach wird für jeweils

Feinanpassung und Prompting begründet, welche entwickelten und untersuchten TLR-

Ansätze mit in den Vergleich einbezogen werden. Zusätzlich wird in diesem Kapitel die

Implementierung der gewählten Ansätze dargestellt, da einige begründete Veränderungen

bei der Implementierung vorgenommen werden müssen.

4.1. Analyse

Bei der Analyse und Auswahl der TLR-Ansätze liegt der Schwerpunkt darauf, dass sie für

die TLR von HLRs zu LLRs geeignet sind. Dafür wird überprüft, ob die Ansätze bereits für

die TLR von HLRs zu LLRs evaluiert wurden. Wenn dies nicht der Fall ist, dann werden

diese Ansätze für den Vergleich nicht weiter in Betracht gezogen. Der Grund hierfür liegt

darin, dass der Fokus dieser Bachelorarbeit auf der Evaluation bestehender Ansätze liegt

und nicht auf der Anpassung von TLR-Ansätzen auf andere Artefakttypen. Wenn nach

dieser Auswahl noch mehrere Ansätze übrig bleiben, dann wird die weitere Wahl anhand

von anderen Faktoren getroffen, wie beispielsweise der Performance des Ansatzes oder wie

stark der Fokus in der Veröffentlichung auf die TLR gelegt wurde.

17

4. Analyse und Implementierung der TLR-Ansätze

4.1.1. Feinanpassung

Bei der Feinanpassung stehen die Ansätze von Deng u. a. [7], Etezadi u. a. [9], Ge u. a. [13],

Lin u. a. [24, 25], Majidzadeh, Ashtiani und Zakeri-Nasrabadi [28] und Wang u. a. [43] zur

Verfügung.

Von diesen wurden als einziges die Ansätze von Ge u. a. [13] und Lin u. a. [24] für die TLR

von HLRs zu LLRs evaluiert. Dabei werden die Ansätze von Ge u. a. [13] in dieser Arbeit

nicht weiter berücksichtigt, da sie leichtgewichtige Feinanpassungsmethoden wie LoRa

[22], Prompt-Tuning [23] oder P-Tuning-v2 [27] verwenden und die Nutzung von mehreren

Feinanpassungsansätzen den Rahmen der Arbeit überschreiten würde.

Die fünf verschiedenen TLR-Ansätze von Lin u. a. [24] nutzen alle Feinanpassung, bei der

alle Modellparameter aktualisiert werden. Da die Evaluation von Lin u. a. [24] sowohl auf

dieselbe Art und Weise als auch auf den gleichen Datensätzen/Projekten für alle Ansätze

durchgeführt wurde, wird der Ansatz anhand der Performance ausgewählt. Der Task-

CLS-Ansatz brachte die beste Performance, weswegen dieser in abgewandelter Form als

Feinanpassungsansatz (FA) verwendet wird.

4.1.2. Prompting

Prompting-Ansätze wurden von Etezadi u. a. [9], Fuchß u. a. [10, 11], Ge u. a. [13], Hey u. a.

[21], Niu u. a. [33] und Rodriguez, Dearstyne und Cleland-Huang [40] entwickelt und/oder

evaluiert. Im Gegensatz zur Feinanpassung gibt es beim Prompting mehrere Ansätze, die

dieselbe TLR-Aufgabe evaluierten, die in dieser Bachelorarbeit untersucht wird. Diese

Evaluationen wurden von Fuchß u. a. [10], Ge u. a. [13], Hey u. a. [21], Niu u. a. [33] und

Rodriguez, Dearstyne und Cleland-Huang [40] durchgeführt.

Eine weitere Ansatzwahl nach der Performance ist bei den meisten dieser Veröffentlichun-

gen nicht sinnvoll, da häufig verschiedene Datensätze genutzt wurden und/oder nicht die

gleichen Evaluationsmetriken vorliegen, weswegen die Ansätze hauptsächlich nach anderen

Faktoren herausgefiltert werden. Die Ansätze von Rodriguez, Dearstyne und Cleland-Huang

[40] werden nicht mit in den Vergleich einbezogen, da bereits neuere Ansätze von beispiels-

weise Fuchß u. a. [10], Ge u. a. [13] und Hey u. a. [21] entwickelt und evaluiert wurden,

welche auf den Ergebnissen von Rodriguez, Dearstyne und Cleland-Huang [40] aufbauten.

Auch der Ansatz von Niu u. a. [33] wird ebenfalls in dieser Arbeit nicht genutzt, da einerseits

der Fokus nicht auf der TLR lag und andererseits dieser Ansatz nur für eine spezielle Domäne

(Kraftfahrzeugsysteme) evaluiert wurde. Die Prompting-Ansätze von Ge u. a. [13] werden

auch nicht mit einbezogen, da sie keine Analyse zur Ermittlung des besten Prompting-

Ansatzes durchführten. Dadurch ist nicht bekannt, welcher der beste Prompting-Ansatz

aus der Veröffentlichung ist. Diese Ermittlung kann auch nicht in dieser Bachelorarbeit

durchgeführt werden, da die genauen Prompting-Ergebnisse nicht veröffentlicht wurden.

Zusätzlich ist eine Betrachtung aller Prompting-Ansätze von Ge u. a. [13] ist nicht mög-

lich, da dies den Rahmen dieser Arbeit überschreiten würde. Fuchß u. a. [10] und Hey u. a.

[21] testeten auf den gleichen Datensätzen und gaben dieselben Evaluationsmetriken an,

18

4.2. Implementierung

wodurch die Ansatzwahl bei diesen Veröffentlichungen nach der Performance getroffen

werden kann. Der Ansatz von Hey u. a. [21] brachte die bessere Leistung, weswegen als

Prompting-Ansatz 1 (PA1) der LiSSA-Ansatz verwendet wird, welcher von Hey u. a. [21] für

die TLR von HLRs zu LLRs getestet wurde.

Darüber hinaus wird der Vergleich um einen weiteren Prompting-Ansatz (Prompting-Ansatz

2 (PA2)) ergänzt, der ausschließlich auf Prompting basiert und keine zusätzlichen Verfahren

wie RAG oder Datenaugmentierung einsetzt. Dadurch werden die Ergebnisse ausschließlich

durch die jeweilige Methode bestimmt, was einen direkten Vergleich der Leistungsfähigkeit

von Feinanpassung und Prompting ermöglicht. Dafür wird eine Abwandlung von dem PA1

verwendet.

In dieser Bachelorarbeit wird zusätzlich few-shot/multi-shot Prompting betrachtet. Der

Grund dafür ist, dass diese Art von Prompting noch nicht von der Forschungsgemeinschaft

für die TLR von HLRs zu LLRs evaluiert wurde und es möglicherweise eine Alternative zu

Feinanpassung ist, da beide Ansatzarten annotierte Daten benötigen. Außerdem zeigten

Etezadi u. a. [9] in der Vergangenheit, dass few-shot Prompting im Vergleich zur Feinanpas-

sung bessere Ergebnisse liefern kann. Der Ansatz von Etezadi u. a. [9] ist auch der einzige

few-shot/multi-shot Prompting-TLR-Ansatz aus der Forschung. Dieser fällt aber aus der

Betrachtung raus, da er nicht für die TLR von HLRs zu LLRs entwickelt wurde. Deswegen

wird als Prompting-Ansatz 3 (PA3) eine Abwandlung von PA2 genutzt.

4.2. Implementierung

Für den Vergleich werden die Ansätze, welche in Abschnitt 4.1 ausgewählt werden, teilweise

in einer eigenen Implementierung umgesetzt. Dies ist notwendig, da Teile der Ansätze aus

der Forschung in dieser Bachelorarbeit aus verschiedenen Gründen abgewandelt werden.

4.2.1. Feinanpassungsansatz: BertForSequenceClassification

Dieser Ansatz verwendet das Modell BertForSequenceClassification, welches in Unterunterab-
schnitt 2.2.2.1 bereits vorgestellt wurde. Das Modell wird bei diesem Ansatz mit zwei Klassen

(𝑛 = 2) verwendet: Klasse 0 ist die Klasse der Nicht-TLs und Klasse 1 ist die Klasse der TLs.

Als Eingabetext-Tokens in diesesModell wird die zu überprüfende Kombination aus HLR und

LLR übergeben. Dazu werden die beiden Artefakte zunächst einzeln in Tokens umgewandelt

und dann durch ein SEP-Token getrennt. Nachdem das Modell durchlaufen wurde, wird

die Klasse als Klassifikationsergebnis ausgewählt, die die größte Klassenwahrscheinlichkeit

hat.

Beim Modell kann man verschiedene Kodierer-PLMs verwenden. Da sich zeigte, dass BERT

bessere Ergebnisse liefert als andere Kodierer wie z.B. RoBERTa [24], wird bei diesem Ansatz

BERT [8] verwendet. Als spezielle BERT-Variante wird bert-large-cased genutzt. Large wird
verwendet, da im Vergleich zu base die Modellkapazität größer ist. Cased wird genutzt, da

das Modell bei dieser Variante zwischen großen und kleinen Buchstaben unterscheidet.

19

4. Analyse und Implementierung der TLR-Ansätze

Dies ist vermutlich wichtig, da in den vorhandenen Anforderungen der Datensätze viele

großgeschriebene Abkürzungen vorkommen.

Beim originalen Ansatz von Lin u. a. [24] wurde vor der Feinanpassung auf dem verwendeten

Modell ein Zwischentraining durchgeführt. Da die zwischentrainierten Modelle jedoch

nicht veröffentlicht wurden und eine selbstständige Durchführung des Zwischentrainings

den Rahmen der Bachelorarbeit überschreiten würde, wird auf diesen Schritt verzichtet.

Bei der eigentlichen Feinanpassung werden alle Modellparameter aktualisiert. Als Verlust-

funktion kommt der für das Modell übliche Cross-Entropy-Loss zum Einsatz. Zusätzlich

nutzt der originale Ansatz die Stichprobenstrategie Online Negative Sampling. Bei dieser
Strategie sucht man in jedem Trainingsschritt die Nicht-TLs, die am wahrscheinlichsten als

TL klassifiziert werden. Dies erhöht aber die Trainingszeit stark, da während des Trainings

diese Nicht-TLs ermittelt werden müssen. Da in dieser Bachelorarbeit sehr viele verschiede-

ne Modelle trainiert werden, ist eine Verwendung dieser Strategie aus diesem Grund nicht

sinnvoll. Um die Vorteile einer Stichprobenstrategie nicht zu verlieren, wird in dieser Arbeit

die Strategie Dynamic Random Negative Sampling verwendet, welche eine Alternative zum

Online Negative Sampling ist [24].

4.2.2. Prompting-Ansatz 1: zero-shot mit Retrieval-Augmented Generation

Der LiSSA-Ansatz [11] muss für diese Bachelorarbeit nicht verändert werden. Bei diesem

Ansatz werden zuerst mögliche Kombinationen aus Quell- und Zielartefakten herausgefil-

tert, indem die Artefakte in Vektoren mit dem text-embedding-3-large Einbettungsmodell

umgewandelt und mit der Kosinus-Ähnlichkeit (
𝑄𝐴·𝑍𝐴

∥𝑄𝐴∥ ∥𝑍𝐴∥ , wobei 𝑄𝐴 der Vektor des Quel-

lartefakt und 𝑍𝐴 der Vektor des Zielartefakt ist) die vier ähnlichsten Zielartefakte zu jedem

Quellartefakt ermittelt werden. Nur diese ermittelten Kombinationen werden als mögliche

TL-Kandidaten behandelt und dem Prompting unterzogen. Dabei können verschiedene

Prompts und Modelle benutzt werden. Der Chain-of-Thougth-Prompt (Prompt 1) in Kombi-

nation mit dem GPT-4o-Modell (gpt-4o-2024-08-06) lieferte die besten Ergebnisse, weswegen

nur diese Ansatzvariante in den Vergleich mit einbezogen wird.

Prompt 1: zero-shot Prompt
Below are two artifacts from the same software system. Is there a traceability link

between (1) and (2)? Give your reasoning and then answer with ’yes’ or ’no’ enclosed

in <trace> </trace>.

(1) requirement: '''[HLR]'''

(2) requirement: '''[LLR]'''

20

4.2. Implementierung

4.2.3. Prompting-Ansatz 2: zero-shot ohne Retrieval-Augmented Generation

Dieser Ansatz ist eine Abwandlung vom PA1. Bei PA2 wird die Vorfilterung der Kombinatio-

nen aus PA1weggelassen, sodass alle mögliche Kombinationen aus Quell- und Zielartefakten

aus einem Projekt dem Prompting unterzogen werden. Bei diesem Ansatz wird ebenfalls

Prompt 1 und als Modell GPT-4o (gpt-4o-2024-08-06) genutzt.

4.2.4. Prompting-Ansatz 3: few-shot/multi-shot

Dieser Ansatz ist eine Abwandlung von PA2. Im Gegensatz zu PA2 nutzt dieser Ansatz

einen few-shot/multi-shot Prompt (Prompt 2), welcher aus Prompt 1 abgeleitet wird. Als

Modell wird GPT-4o-mini (gpt-4o-mini-2024-07-18) verwendet, da GPT-4o zu große Kosten

bei Experimenten verursachen würde.

Prompt 2: few-shot/multi-shot Prompt
Below are examples of traceability link decisions between high-level and low-level

requirements from the same software system.

Example 1:

(1) requirement: '''[HLR Beispiel 1]'''

(2) requirement: '''[LLR Beispiel 1]'''

Traceability link: [yes/no]

[Mögliche weitere Beispiele]

Now consider the following case. Is there a traceability link between (1) and (2)?

Give your reasoning and then answer with ’yes’ or ’no’ enclosed in <trace> </trace>.

(1) requirement: '''[HLR]'''

(2) requirement: '''[LLR]'''

21

5. Szenarienbasierte Experimente und
Auswertung

Für einen direkten Vergleich von Feinanpassung und Prompting benötigt man neben ge-

eigneten Ansätzen zusätzlich auch eine Untersuchung ihrer Leistungsfähigkeit bei einer

bestimmten Aufgabe. Beim FA, PA2 und PA3 liegen noch keine Ergebnisse vor, da diese

Ansätze eigene Ableitungen/Implementierungen vorhandener Ansätze sind. Aus diesem

Grund werden für die Ermittlung der Performance selbst Experimente durchgeführt, welche

auf den gleichen Datensätzen/Projekten ausführt und mit identischen Evaluationsmetriken

bewertet werden. Die Experimente orientieren sich an verschiedenen Szenarien. Diese

bilden unterschiedliche reale Anwendungssituationen ab, in denen annotierte Projekte und

projekt-interne Daten entweder vorhanden sind oder fehlen. Dadurch kann ein Entwickler

in seinem Anwendungsfall mithilfe dieser Bachelorarbeit den TLR-Ansatz mit der besten

Leistungsfähigkeit auswählen.

In diesem Kapitel werden zunächst die experimentellen Rahmenbedingungen beschrieben.

Danach werden die einzelnen Szenarien vorgestellt. Wenn für die Szenarien neue Experimen-

te durchgeführt werden, dann werden der Aufbau und die Ergebnisse dieser Experimente

zusätzlich einzeln beschrieben. Anschließend werden in den Szenarien die Ergebnisse der

verschiedenen Ansätze vergleichend ausgewertet. Bei der Auswertung wird als wichtigste

Evaluationsmetrik der 𝐹1-Wert verwendet, da diese Metrik für die vollautomatisierte TLR

am wichtigsten ist [21]. Dazu werden die 𝐹2-Werte bei der Auswertung mit beschrieben, da

diese für die semi-automatisierte TLR eine hohe Relevanz besitzen [10, 21].

5.1. Experimentelle Rahmenbedingungen

Vor den Experimenten müssen verschiedene Rahmenbedingungen festgelegt werden. Hierzu

zählen unter anderem die Datensätze, welche zum Trainieren und Testen der Ansätze

verwendet werden, und die Hyperparameter für die Feinanpassung. Alle Experimente,

welche durchgeführt werden, laufen auf einem Server mit einer NVIDIA Tesla V100S

Grafikkarte mit 32 GB Grafikkartenspeicher. Für die DA, das eigentliche Training, das

Testen der Modelle und die Darstellung der Ergebnisse wird die Programmiersprache

Python genutzt. Beim Prompting wird die Temperatur auf null gesetzt. Zusätzlich wird

ein fester Zufallswert verwendet, wodurch die Experimente möglichst deterministisch und

reproduzierbar ablaufen.

23

5. Szenarienbasierte Experimente und Auswertung

Datensatz

Quellartefakte:

HLRs

Zielartefakte:

LLRs

Kombinationen TLs

CM1-NASA 22 53 1166 45

Dronology 99 211 20889 220

GANNT 17 69 1173 68

Modis 19 49 931 41

WARC 63 89 5607 136

Tabelle 5.1.: Anzahl der Artefakte, Kombinationen und TLs in den Datensätzen

5.1.1. Datensätze

In dieser Arbeit werden die Datensätze CM1-NASA, Dronology, GANNT, Modis und WARC,

welche von Hey u. a. [21] genutzt wurden, verwendet. Einerseits sind die TLs von den HLRs

zu den LLRs enthalten, was eine notwendige Voraussetzung ist. Andererseits bieten die Da-

tensätze den Vorteil, dass Hey u. a. [21] auf den Datensätzen die benötigten Experimente für

PA1 schon durchführten, wodurch weniger Ressourcen für diese Bachelorarbeit verbraucht

werden. Zusätzlich decken die Datensätze verschiedene Domänen ab.

Die Anzahl der Artefakte, der daraus resultierenden Kombinationen und der TLs sind in

Tabelle 5.1 dargestellt. Dronology ist der größte und Modis der kleinste Datensatz. CM1-

NASA und GANNT haben eine ähnliche Größe wie Modis. WARC hat eine mittlere Größe

und ist etwa sechsmal so groß wie Modis. Auch der prozentuale Anteil an TLs ist bei CM1-

NASA, GANNT und Modis ähnlich. Bei WARC ist dieser Anteil kleiner und bei Dronology

noch geringer.

Wenn die Anzahl der Wörter in den Artefakten betrachtet wird, welche in Abbildung 5.1 dar-

gestellt sind, dann wird folgendes sichtbar: Die Wörteranzahlen in den Anforderungen sind

in einem ähnlichen Bereich mit Ausnahme der Anzahlen in den LLRs in CM1-NASA, welche

sowohl im Median als auch im Maximum deutlich größer sind. Die gleiche Beobachtung

lässt sich auch bei der Anzahl an BERT- und GPT-Tokens machen, welche in Abbildungen

des Anhangs dargestellt sind.

5.1.2. Hyperparameteroptimierung

Für alle Experimente mit dem FA werden Hyperparameter für das Training benötigt. Übli-

cherweise werden diese für jedes Modell einzeln ermittelt [6]. Die Trainingszeit und der

Ressourcenverbrauch würden in dieser Bachelorarbeit dabei aber stark erhöht werden, da

für diese Bachelorarbeit sehr viele verschiedene Modelle trainiert werden. Dies würde den

Rahmen der Bachelorarbeit überschreiten. Aus diesem Grund wird die Hyperparameteropti-

mierung nur einmal vor allen Experimenten mit dem FA durchgeführt und es werden die

gleichen optimalen Hyperparameter für alle Modelle in allen Experimenten genutzt.

24

5.1. Experimentelle Rahmenbedingungen

CM1-NASA Dronology GANNT Modis WARC
Datensätze

0

50

100

150

200

250
W

ör
te

ra
nz

ah
l

High-Level-Anforderungen
Low-Level-Anforderungen

Abbildung 5.1.: Anzahl der Wörter in den Anforderungen der Datensätze

Für die Hyperparameteroptimierung wird die Strategie Grid Search verwendet. Als Daten-

aufteilungsstrategie wird mixed-projekt, welche in Abbildung 5.2 dargestellt ist, genutzt. Bei

dieser Strategie werden alle Daten aus allen Projekten zusammengesetzt und durchmischt.

Danach wird die entstandene Menge in 𝑘 gleich große Mengen stratifiziert aufgeteilt. Eine

Menge davon wird für das Testen verwendet und die anderen Mengen als TBD. Diese Daten-

aufteilungsstrategie wird in der Hyperparameteroptimierung genutzt, da bei dieser Strategie

Daten aus allen Projekten sowohl in der Trainings- als auch in der Testmenge vorliegen,

wodurch ein möglichst breites Spektrum an Daten abgedeckt wird. Dabei werden die Daten

in fünf Teile (𝑘 = 5) aufgeteilt, wobei eine Aufteilung für das Testen genutzt wird und

die rechtlichen vier für das Training der Modelle. Bei dieser Hyperparameteroptimierung

wird keine Kreuzvalidierung durchgeführt. Einerseits würde sich dadurch der Zeitaufwand

verfünffachen und andererseits beinhaltet die Testmenge viele und variable Daten, sodass

keine großen Varianzen der Performance zwischen den einzelnen Testmengen zu erwar-

ten sind. Bei der Hyperparameteroptimierung werden nur die wichtigen Hyperparameter

Anzahl an Trainingsepochen, Lernrate, Gewichtsverfall und Anzahl an Trainingsdaten

pro Trainingsschritt pro Gerät optimiert. Alle anderen Hyperparameter werden auf den

Standardwerten belassen, welche von der Trainer-Klasse der Python-Bibliothek transformers
vorgegeben werden.

25

5. Szenarienbasierte Experimente und Auswertung

Projekt 1 Projekt 2 . . . Projekt 𝑛

Menge 1 Menge 2 . . . Menge 𝑘

TBD Testdaten

durchmischen

stratifiziert aufteilen

durchmischen

Abbildung 5.2.: mixed-projekt Datenaufteilungsstrategie - 𝑛 entspricht der Anzahl an Projekten -

𝑘 ∈ N+

5.1.2.1. Erste Stufe

Bei der Hyperparameteroptimierung werden vorerst folgende Hyperparameter mit den

zugehörigen Werten getestet:

• Anzahl an Trainingsepochen: 10; 20

• Lernrate: 5e-6; 1e-5; 5e-5

• Gewichtsverfall: 0,0

• Anzahl an Trainingsdaten pro Trainingsschritt pro Gerät: 8; 16; 32

Bei der Durchführung war auffällig, dass es bei der Anzahl an Trainingsdaten pro Trainings-

schritt pro Gerät 32 öfters zu Abstürzen kam, da der verfügbare Grafikkartenspeicher nicht

ausreichte.

Die Ergebnisse (𝐹1-Werte) des ersten Durchlaufs sind in Abbildung 5.3 dargestellt. Bei der

Anzahl an Trainingsepochen wird sichtbar, dass es bei einer höheren Epochenanzahl zu

besseren Ergebnissen kommt, wenn die Ausreißer außer Acht gelassen werden. Zusätzlich

wird bei der Anzahl an Trainingsdaten pro Trainingsschritt pro Gerät augenfällig, dass

die Ergebnisse bei allen genutzten Werten in einem ähnlichen Bereich liegen, wenn die

Ausreißer ebenfalls außer Acht gelassen werden. Bei der Lernrate fällt auf, dass die Ausreißer

nur bei 5e-5 auftreten. Zusätzlich zeigte sich, dass die Lernrate 1e-5 im Schnitt bessere

Ergebnisse lieferte als 5e-6.

26

5.1. Experimentelle Rahmenbedingungen

8 16 32
Anzahl an Trainingsdaten

pro Trainingsschritt pro Gerät

5e
-0

6
1e

-0
5

5e
-0

5
Le

rn
ra

te

0,362 0,383 0,375

0,449 0,419 0,413

0,214 0,430 0,412

Anzahl an Trainingsepochen = 10

8 16 32
Anzahl an Trainingsdaten

pro Trainingsschritt pro Gerät

5e
-0

6
1e

-0
5

5e
-0

5
Le

rn
ra

te

0,490 0,457 0,438

0,551 0,529 0,488

0,000 0,120 0,473

Anzahl an Trainingsepochen = 20

Abbildung 5.3.: Ergebnisse (𝐹1-Werte) der ersten Stufe der Hyperparameteroptimierung

5.1.2.2. Zweite Stufe

Um zu überprüfen, ob die Leistungmit einer weiteren Erhöhung der Anzahl an Trainingsepo-

chen gesteigert werden kann, wird eine zweite Stufe der Hyperparameteroptimierung

durchgeführt. Dabei wird sowohl mit der Anzahl an Trainingsepochen als auch mit dem

Gewichtsverfall variiert. Der Gewichtsverfall wird erst in dieser Stufe variiert, da die Durch-

führungsdauer der ersten Stufe zu groß gewesen wäre. Die Lernrate und die Anzahl an

Trainingsdaten pro Trainingsschritt pro Gerät wird in dieser Stufe festgesetzt, da die Va-

rianzen mit Ausnahme der Ausreißer gering ausfielen und eine Variation der Werte den

Zeitbedarf deutlich erhöhen würde. Die Lernrate wird auf 1e-5 festgesetzt, da mit dieser

Konfiguration im Schnitt die beste Leistung in der vorherigen Stufe erzielt werden konnte.

Für die Anzahl an Trainingsdaten pro Trainingsschritt pro Gerät wird 16 festgelegt, da 16

im Schnitt bessere Leistung als acht brachte und da 32 zu Abstürzen des Testprogramms

führte.

Für diese Stufe der Hyperparameteroptimierung werden folgende Hyperparameter mit den

zugehörigen Werten genutzt:

• Anzahl an Trainingsepochen: 16; 32; 64; 128

• Lernrate: 1e-5

• Gewichtsverfall: 0,0; 0,1; 0,2; 0,3; 0,4

• Anzahl an Trainingsdaten pro Trainingsschritt pro Gerät: 16

27

5. Szenarienbasierte Experimente und Auswertung

0.0 0.1 0.2 0.3 0.4
Gewichtsverfall

16
32

64
12

8
A

nz
ah

l a
n

Tr
ai

ni
ng

se
po

ch
en

0,476 0,500 0,473 0,494 0,497

0,556 0,553 0,566 0,576 0,543

0,599 0,631 0,623 0,636 0,603

0,612 0,616 0,627 0,637 0,623

Abbildung 5.4.: Ergebnisse (𝐹1-Werte) der zweiten Stufe der Hyperparameteroptimierung

Bei der eigentlichen Durchführung der Hyperparameteroptimierung gab es keine Auffällig-

keiten.

Die Ergebnisse (𝐹1-Werte) dieser Stufe sind in Abbildung 5.4 dargestellt. Eine Steigerung

der Leistung mit Erhöhung der Anzahl an Trainingsepochen zeigte sich erneut, wobei aber

sichtbar wird, dass diese Steigerung mit der Erhöhung der Anzahl an Trainingsepochen

immer geringer wird. Zusätzlich wird augenfällig, dass die Variation des Gewichtsverfalls

bei fester Anzahl an Trainingsepochen keinen großen Einfluss auf die Performance hat. Die

beste Leistung brachte die Kombinationen aus dem Gewichtsverfall 0,3 und der Anzahl an

Trainingsepochen 128.

Es werden keine starken Leistungsverbesserungen mit weiterer Steigerung der Anzahl an

Trainingsepochen erwartet, da sich zeigte, dass die Performance mit Erhöhung nicht mehr

stark steigt. Zusätzlich würde eine weitere Erhöhung die Trainingszeit noch weiter erhöhen.

Aus diesem Grund werden nun die optimierten Hyperparameter für die Experimente wie

folgt festgelegt:

• Anzahl an Trainingsepochen: 128

• Lernrate: 1e-5

• Gewichtsverfall: 0,3

• Anzahl an Trainingsdaten pro Trainingsschritt pro Gerät: 16

28

5.2. Szenario 1: TL-Generierung

5.2. Szenario 1: TL-Generierung

In diesem Szenario stehen dem Entwickler keine früheren Projekte mit dokumentierten

TLs zur Verfügung. Zusätzlich sind keine TLs im aktuellen Projekt, auf welchem die TLR

durchgeführt wird, dokumentiert. Zudem beabsichtigt er nicht, eigene Ressourcen für

eine selbstständige Annotation dieser TLs einzusetzen. Ziel des Entwicklers ist es, alle

TLs des aktuellen Projekts zu ermitteln. Damit wird in diesem Szenario die TLR-Aufgabe

TL-Generierung bearbeitet.

Für dieses Szenario fällt der FA raus, da er zwangsweise annotierte Daten für die Feinan-

passung benötigt. Eine Verwendung ohne die Feinanpassung ergibt keinen Sinn, da die

Klassifikationsschicht des genutzten Modells neu initialisierte Modellparameter beinhaltet,

wodurch die Klassifikation zufällig wäre [24]. Auch der PA3 kann in diesem Szenario nicht

genutzt werden, da keine annotierten Daten für die Beispiele vorliegen. PA1 und PA2 sind

für dieses Szenario geeignet, da diese Ansätze keine annotierten Daten benötigen. Für PA1

liegen die Ergebnisse bereits vor und für PA2 stellen mir meine Betreuer die Ergebnisse zur

Verfügung.

Da in diesem Szenario keine Feinanpassung infrage kommt, entfällt ein direkter Vergleich

zwischen Feinanpassung und Prompting. Dennoch wird ein Experiment und eine Auswer-

tung durchgeführt, da Experiment 1 neue Ergebnisse liefert, welche von der Forschungsge-

meinschaft noch nicht betrachtet wurden.

Aus demVorherigen ergibt sich für dieses Szenario die Forschungsfrage 1:Welchen Einfluss

hat die Verwendung von RAG auf die Leistung bei der automatisierten TL-Generierung von

HLRs zu LLRs mit zero-shot Prompting?

5.2.1. Experiment 1: zero-shot Prompting ohne Retrieval-Augmented
Generation (Prompting-Ansatz 2)

In diesem Experiment wird der PA2 verwendet, indem das LiSSA-Framework [11] für den

Ansatz angepasst wird. Eine DA ist nicht notwendig, da keine TBD aus den Datensätzen

entnommen werden, wodurch auf allen Daten getestet wird. Der Zufallswert ist hierbei auf

133742243 festgesetzt.

Die Ergebnisse des Experiments sind in Tabelle 5.2 dargestellt. Die Präzision liegt bei allen

Testdatensätzen in einem niedrigen Bereich unter oder nahe 0,3 und die Ausbeute ist bei

allen Testdatensätzen sehr hoch mit Ausnahme von Modis. Bei Modis liegt die Ausbeute in

einem ähnlichen Bereich wie die Präzision. Die ermittelten 𝐹1-Werte liegen alle um 0,3 und

die 𝐹2-Werte in einem Bereich von 0,35 bis 0,6.

29

5. Szenarienbasierte Experimente und Auswertung

zero-shot Prompting ohne RAG (PA2)

zero-shot Prompting

mit RAG (PA1)

Testdatensatz Präzision Ausbeute 𝐹1 𝐹2 𝐹1 𝐹2

CM1-

NASA

0,240 0,933 0,382 0,592 0,519 0,565

Dronology 0,141 0,900 0,244 0,434 0,575 0,620
GANNT 0,206 0,926 0,337 0,545 0,574 0,556
Modis 0,319 0,366 0,341 0,355 0,255 0,197

WARC 0,168 0,912 0,284 0,484 0,584 0,616

Durchschnitt 0,215 0,807 0,318 0,482 0,501 0,511

Tabelle 5.2.: Ergebnisse von Experiment 1 (zero-shot Prompting ohne RAG (Prompting-Ansatz 2))

und zero-shot Prompting mit RAG (Prompting-Ansatz 1)

5.2.2. Auswertung

Die Ergebnisse für die Auswertung dieses Szenarios und die Beantwortung der Forschungs-

frage 1 sind ebenfalls in Tabelle 5.2 aufgezeigt.Wennman die Ansätzemiteinander vergleicht,

dann wird sichtbar, dass die Verwendung von RAG bei PA1 einen deutlichen Zuwachs an

Leistung bringt. Dieser Zuwachs zeigt sich besonders bei den 𝐹1-Werten, die im Durch-

schnitt um 0,183 höher liegen. Auch bei den 𝐹2-Werten ist im Schnitt ein Zuwachs erkennbar,

welcher aber deutlich geringer ausfällt. Modis und CM1-NASA sind die einzigen Datensätze,

die herausstechen. Der zero-shot Prompting-Ansatz ohne RAG (PA2) liefert nur bei Modis

bei den 𝐹1- und 𝐹2-Werten und bei CM1-NASA bei dem 𝐹2-Wert eine bessere Performance.

Die Forschungsfrage 1 kann mit diesen Ergebnissen wie folgt beantwortet werden: Die

Verwendung von RAG verbessert die Leistung bei der automatisierten TL-Generierung mit

zero-shot Prompting. Dies zeigt sich besonders bei den 𝐹1-Werten, welche für die vollauto-

matisierte TLR am wichtigsten sind [11]. Der Ansatz zero-shot Prompting mit RAG bringt

die beste Performance in diesem Szenario.

5.3. Szenario 2: TL-Generierung mit optionalem
Wissenstransfer

In diesem Szenario stehen dem Entwickler nur frühere Projekte mit dokumentierten TLs

zur Verfügung. Es sind keine TLs im aktuellen Projekt, auf welchem die TLR durchgeführt

wird, dokumentiert und er beabsichtigt nicht, eigene Ressourcen für eine selbstständige

Annotation dieser TLs einzusetzen. Ziel des Entwicklers ist es, alle TLs des aktuellen Projekts

zu ermitteln. Damit wird in diesem Szenario die TLR-Aufgabe TL-Generierung bearbeitet.

In diesem Szenario sind alle Ansätze geeignet, da annotierte Daten vorliegen. Die Ergebnisse

von PA1 und PA2 liegen bereits vor und die Performance vom FA wird in Experiment 2

30

5.3. Szenario 2: TL-Generierung mit optionalem Wissenstransfer

Projekt 1 Projekt 2 . . . Projekt 𝑛

TBD Testdaten

durchmischen

Abbildung 5.5.: cross-projekt Datenaufteilungsstrategie - 𝑛 entspricht der Anzahl an Projekten

ermittelt. Mit PA3wird für dieses Szenario kein Experiment durchgeführt, da die verfügbaren

Ressourcen dieser Bachelorarbeit nur für maximal ein Experiment mit PA3 ausreichen

und dieses Experiment in Szenario 3 durchgeführt wird, indem projekt-interne Daten

vorliegen.

Für das Szenario und das zugehörige Experiment wird folgende Forschungsfrage 2 ge-

stellt: Welchen Einfluss hat Wissenstransfer aus anderen Projekten auf die Leistung bei der

automatisierten TL-Generierung von HLRs zu LLRs und wie schneiden Feinanpassung und

zero-shot Prompting in diesem Kontext im Vergleich ab?

5.3.1. Experiment 2: Feinanpassungsansatz mit cross-projekt Datenaufteilung

Bei diesem Experiment wird der FA in Kombination mit der cross-projekt DA genutzt,

welche in Abbildung 5.5 aufgezeigt ist. Hierbei werden alle Daten eines Projektes zum

Testen verwendet und alle anderen Daten aus den anderen Projekten als TBD genutzt. In

diesem Experiment werden alle fünf vorhandenen Datensätze mit einbezogen. Dabei wird

Kreuzvalidierung verwendet, wodurch jeder Datensatz einmal zum Testen genutzt wird.

Die Ergebnisse dieses Experiments sind in Tabelle 5.3 dargestellt. Sowohl die Präzision

als auch die Ausbeute liegen in einem großen Bereich. Die Präzision geht von 0,177 bis

1 und die Ausbeute deckt einen Bereich von 0,178 bis 0,773 ab. Bei CM1-NASA, GANNT

und Modis ist die Präzision deutlich höher als die Ausbeute. Dieser Unterschied fällt bei

Modis, wo die Präzision 1 und Ausbeute 0,049 beträgt, am größten aus. Bei Dronology

hingegen ist die Ausbeute deutlich größer als die Präzision und bei WARC liegen die beiden

Werte in einem ähnlichen Bereich zwischen 30 % und 40 %. Die 𝐹1-Werte liegen bei allen

Datensätzen um 0,3, mit Ausnahme von Modis, wo ein niedriger 𝐹1-Wert von 0,093 erreicht

wird. Bei Modis ist der 𝐹2-Wert noch niedriger als der 𝐹1-Wert. Die 𝐹2-Werte der anderen

Datensätze liegen zwischen 0,204 und 0,463. Zusätzlich zeigen die Ergebnisse, dass eine

größere Trainingsdatenanzahl in diesem Fall nicht zwangsweise die Performance verbessert.

Dies wird bei Dronology undWARC deutlich, für die weniger Trainingsdaten zur Verfügung

standen, da sie verglichen mit den anderen Datensätzen größer sind.

31

5. Szenarienbasierte Experimente und Auswertung

Testdatensatz Präzision Ausbeute 𝐹1 𝐹2

CM1-NASA 0,500 0,178 0,262 0,204

Dronology 0,177 0,773 0,288 0,462

GANNT 0,455 0,294 0,357 0,316

Modis 1,000 0,049 0,093 0,060

WARC 0,377 0,316 0,344 0,327

Durchschnitt 0,502 0,322 0,269 0,274

Tabelle 5.3.: Ergebnisse von Experiment 2 (Feinanpassungsansatz mit cross-projekt Datenaufteilung)

zero-shot Prompting

mit RAG (PA1)

zero-shot Prompting

ohne RAG (PA2)

Feinanpassungsansatz

mit cross-projekt
Datenaufteilung

Testdatensatz 𝐹1 𝐹2 𝐹1 𝐹2 𝐹1 𝐹2

CM1-

NASA

0,519 0,565 0,382 0,592 0,262 0,204

Dronology 0,575 0,620 0,244 0,434 0,288 0,462

GANNT 0,574 0,556 0,337 0,545 0,357 0,316

Modis 0,255 0,197 0,341 0,355 0,093 0,060

WARC 0,584 0,616 0,284 0,484 0,344 0,327

Durchschnitt 0,501 0,511 0,318 0,482 0,269 0,274

Tabelle 5.4.: Ergebnisse für die Auswertung von Szenario 2 (TL-Generierung mit optionalem Wis-

senstransfer)

5.3.2. Auswertung

Für die Auswertung wird sich auf die Einordnung der Ergebnisse des neu durchgeführten

Experiments 2 in die vorhandenen Ergebnisse von PA1 und PA2 beschränkt, da ein Vergleich

zwischen PA1 und PA2 bereits in Szenario 1 durchgeführt wird.

Die Ergebnisse für die Auswertung sind in Tabelle 5.4 dargestellt. Bei allen Datensätzen

liefert der FA schlechtere Ergebnisse als der PA1. Verglichen mit dem PA2 liefert der FA

teilweise bessere Ergebnisse. Dies zeigt sich sowohl bei Dronology (𝐹1- und 𝐹2-Werte) als

auch bei GANNT und WARC (𝐹1-Werte). Da bei Modis die Performance deutlich schlechter

war, ist der FA auch im Schnitt schlechter als der PA2, was sich hauptsächlich bei den

𝐹1-Werten zeigt.

Die Forschungsfrage 2 kann demnach wie folgt beantwortet werden: Durch Wissenstrans-

fer aus anderen Projekten kann bei der TL-Generierung von HLRs zu LLRs mit Feinanpas-

sung keine bessere Leistung wie zero-shot Prompting erzielt werden. Einfaches zero-shot
Prompting ohne RAG liefert ähnliche aber leicht bessere Ergebnisse wie Feinanpassung mit

projekt-externen Daten. Zero-shot Prompting mit RAG liefert deutlich bessere Ergebnisse

wie Feinanpassung und ist in diesem Szenario der Ansatz mit der besten Performance.

32

5.4. Szenario 3: TL-Vervollständigung

Projekt 𝑥

Menge 1 Menge 2 . . . Menge 𝑘

TBD Testdaten

stratifiziert aufteilen

durchmischen

Abbildung 5.6.: intra-projekt Datenaufteilungsstrategie - 𝑥 ∈ {1, 2, . . . , 𝑛 |
𝑛 entspricht der Anzahl an Projekten} - 𝑘 ∈ N+

5.4. Szenario 3: TL-Vervollständigung

In diesem Szenario stehen dem Entwickler keine früheren Projekte mit dokumentierten

TLs zur Verfügung. Im aktuellen Projekt, auf welchem die TLR durchgeführt wird, stehen

einige TLs zur Verfügung bzw. beabsichtigt der Entwickler eigene Ressourcen für eine

selbstständige Annotation dieser TLs einzusetzen. Ziel des Entwicklers ist es, die restlichen

TLs des aktuellen Projekts zu ermitteln. Damit wird in diesem Szenario die TLR-Aufgabe

TL-Vervollständigung bearbeitet.

In diesem Szenario sind alle Ansätze geeignet, da annotierte Daten vorliegen. Die Ergebnisse

von PA1 und PA2 liegen bereits vor und die Performance von PA3 wird in Experiment

4 ermittelt. Für den FA wird für dieses Szenario ein neues Experiment (Experiment 3)

durchgeführt, da die genutzten Trainingsdaten bei Experiment 2 in diesem Szenario nicht

verfügbar und projekt-interne Trainingsdaten nun nutzbar sind.

In diesem Szenario wird folgende Forschungsfrage 3 beantwortet: Welchen Einfluss hat

die Menge an vorhandenen projekt-internen TLs auf die Leistung bei der automatisierten

TL-Vervollständigung von HLRs zu LLRs und wie schneiden Feinanpassung und Prompting

in diesem Kontext im Vergleich ab?

5.4.1. Experiment 3: Feinanpassungsansatz mit intra-projekt Datenaufteilung

Bei diesem Experiment wird der FA in Kombination mit der intra-projekt DA, welche in
Abbildung 5.6 vorgestellt wird, genutzt. Diese Datenaufteilungsstrategie wird für jedes

Projekt einzeln ausgeführt. Alle Daten aus einem Projekt werden hierbei stratifiziert in

𝑘 gleich große Mengen aufgeteilt. Eine Menge davon wird als Testdaten genutzt und die

anderen Mengen als TBD. Bei diesem Experiment wird jeder Datensatz stratifiziert in fünf

Mengen (𝑘 = 5) geteilt. In diesem Experiment wird Kreuzvalidierung genutzt, wodurch in

jedem Datensatz jede Menge zum Testen verwendet wird. Wie in Abbildung 5.7 dargestellt,

werden aus der Trainingsdatenmenge nicht immer alle Daten entnommen, sondern nur

33

5. Szenarienbasierte Experimente und Auswertung

BERT [8] Mögliche Trainingsdaten Testdaten

Tatsächliche Trainingsdaten

BERT [8] mit Feinanpassung

Testergebnisse

𝑥-Daten

stratifiziert

wählen

trainieren

testen

𝑦-mal

wiederholen

Abbildung 5.7.: Ablauf von Experiment 3 (Feinanpassungsansatz mit intra-projekt Datenaufteilung) -
Ablauf wird für jede Kombination aus Datensatz, Testmenge und Trainingsdatenanzahl wiederholt

- 𝑥 ∈ {𝑧 ∈ {32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,maximum} | 𝑧-Daten sind möglich} -
𝑦 = 4

eine bestimmte Anzahl stratifiziert. Je Kombination aus Datensatz, Testmenge und Trai-

ningsdatenanzahl werden vier Modelle erstellt. Für jedes dieser Modelle werden zufällig

andere Trainingsdaten ausgewählt. Insgesamt werden demnach 20 Modelle pro Trainings-

datenanzahl in jedem Datensatz trainiert und getestet. Bei diesem Experiment wird mit 32

Trainingsdaten gestartet, da bei dieser Anzahl bei den meisten Datensätzen mindestens ein

TL vorliegt. Die Trainingsdatenanzahl wächst dann exponentiell und endet mit der größt-

möglichen Anzahl, also 80 % der Projektdaten. Der exponentielle Anstieg stellt sicher, dass

kleine Datensätze gut abgedeckt werden und die Experimentdauer bei großen Datensätzen

im vorgegebenen Rahmen bleibt.

Die Ergebnisse (Durchschnitt und Standardabweichung der 𝐹1- und 𝐹2-Werte pro Trainings-

datenanzahl auf jedem Datensatz) sind in Abbildung 5.8 abgebildet. Die konkreten Werte

können in Tabellen des Anhangs eingesehen werden. Sie zeigen, dass sich die 𝐹1- und

𝐹2-Werte nur wenig unterscheiden. Zusätzlich wird sichtbar, dass die durchschnittliche

Leistung der feinangepassten PLMs bei wenigen Trainingsdaten schlecht ist und sich mit

Erhöhung der Trainingsdatenanzahl steigert. Die durchschnittlichen Werte sind bei we-

nigen Trainingsdaten bei den kleineren Datensätzen besser. Modis sticht dabei besonders

heraus, da die Ergebnisse auf dem Modis-Datensatz im Schnitt deutlich über denen der

anderen Datensätze liegen. Die 𝐹1- und 𝐹2-Werte erreichen bei Modis und Dronology bei

maximalen Trainingsdaten ähnliche Durchschnittswerte um 0,7. Bei Modis ist die durch-

schnittliche Abweichung der Werte am Anfang am größten und sinkt mit Erhöhung der

Trainingsdatenanzahl. Bei allen anderen Datensätzen ist die Standardabweichung bei ge-

ringer Trainingsdatenanzahl klein, steigt dann mit Erhöhung, erreicht das Maximum und

stagniert oder sinkt leicht mit weiterer Steigerung der Anzahl an Trainingsdaten.

34

5.4. Szenario 3: TL-Vervollständigung

102 103 104

Trainingsdatenanzahl
(Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0
F1

102 103 104

Trainingsdatenanzahl
(Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0

F2

CM1-NASA
Dronology
GANNT

Modis
WARC

Abbildung 5.8.: Ergebnisse von Experiment 3 (Feinanpassungsansatz mit intra-projekt Datenauf-
teilung) - Durchschnittliche 𝐹1-Werte mit Standardabweichungen (links) und durchschnittliche

𝐹2-Werte mit Standardabweichungen (rechts)

5.4.2. Experiment 4: few-shot/multi-shot Prompting (Prompting-Ansatz 3) mit
intra-projekt Datenaufteilung

Bei diesem Experiment wird der PA3 in Kombination mit der intra-projekt Datenaufteilung
genutzt. Der Zufallswert wird auf 3426785 festgesetzt. Jeder Datensatz wird, wie in Expe-

riment 3, jeweils stratifiziert in fünf Mengen (𝑘 = 5) aufgeteilt. Zusätzlich wird ebenfalls

Kreuzvalidierung verwendet. Die Durchführung des Experiments ist in Abbildung 5.9 aufge-

zeigt. Es werden nicht alle Daten aus der Beispieldatenmenge entnommen, sondern nur eine

festgelegte Anzahl. Diesmal erfolgt die Entnahme nicht stratifiziert, da bei einer geringen

Beispieldatenanzahl keine TLs vorhanden wären. Es wird die gleiche Verteilung wie bei der

Entnahme pro Epoche beim FA (50 % TLs und 50 % Nicht-TLs) gewählt, weil kein anderer

Referenzwert vorhanden ist, da Etezadi u. a. [9] ihre genutzte Verteilung beim few-shot
Prompting nicht angaben. Für jede Kombination aus Datensatz, Testmenge und Beispiel-

datenanzahl wird bei CM1-NASA, GANNT, Modis und WARC viermal auf der Testmenge

mit zufällig gewählten, unterschiedlichen Beispielen getestet. Bei Dronology wird diese

Anzahl auf zwei reduziert, da die API-Kosten den Rahmen der Bachelorarbeit überschreiten

würden. Es werden zehn verschiedene Beispieldatenanzahlen verwendet: zwei, vier, sechs,

35

5. Szenarienbasierte Experimente und Auswertung

GPT-4o-mini Mögliche Beispieldaten Testdaten

Tatsächliche Beispieldaten

Prompts

Testergebnisse

𝑥-Daten

mit 50 % TLs

wählen

in Prompts

einbauen

testen/prompting

𝑦-mal

wiederholen

Abbildung 5.9.: Ablauf von Experiment 4 (few-shot/multi-shot Prompting (PA3) mit intra-projekt
Datenaufteilung) - Ablauf wird für jede Kombination aus Datensatz, Testmenge und Beispieldaten-

anzahl wiederholt - 𝑥 ∈ {2, 4, 6, 8, 10, 20, 30, 40, 50, 60} - 𝑦 = 4 bei CM1-NASA, GANNT, Modis und

WARC und 𝑦 = 2 bei Dronology

acht, zehn, 20, 30, 40, 50 und 60. Dadurch wird sowohl der few-shot Bereich mit einigen

Beispielen als auch der multi-shot Bereich mit vielen Beispielen abgedeckt.

Die Ergebnisse des Experiments sind in Abbildung 5.10 veranschaulicht. Zusätzlich sind die

genauen Ergebnisse wieder in Tabellen des Anhangs dargestellt. Die durchschnittlichen

𝐹1- und 𝐹2-Werte steigen bei allen Datensätzen mit Steigerung der Beispielanzahl, wobei

der Anstieg am Anfang zwischen zwei und zehn Beispielen an größten ist. Danach stagnie-

ren die Werte oder der Anstieg nimmt ab, was am stärksten bei CM1-NASA und Modis

sichtbar wird. Insgesamt zeigen die Ergebnisse, dass der Leistungszuwachs insbesondere im

Bereich von etwa acht bis zehn Beispieldaten am größten ist, wenn wenige Beispiele genutzt

werden. Im Vergleich der Datensätze liefert der Ansatz bei Modis bei den 𝐹1-Werten die

besten Ergebnisse und bei Dronology die schlechtesten. Bei CM1-NASA werden ähnliche,

jedoch leicht bessere Ergebnisse erzielt als bei Dronology. Die Ergebnisse von GANNT

und WARC liegen zwischen den Ergebnissen von Modis und CM1-NASA. Die Leistung,

gemessen an den durchschnittlichen 𝐹2-Werten, liegt bei GANNT, Modis und WARC in

einem ähnlichen Bereich. Nur bei CM1-NASA und Dronology ist sie deutlich schlechter.

Die Standardabweichungen liegen alle unter 0,2 und bei Modis sind sie am größten. Andere

Auffälligkeiten sind bei den durchschnittlichen Abweichungen nicht sichtbar.

5.4.3. Auswertung

Für die Auswertung wird sich ebenfalls wieder auf die Einordnung der Ergebnisse der

neuen Experimente beschränkt. Bei Ansätzen, bei denen die TBD-Anzahl variiert wird,

36

5.4. Szenario 3: TL-Vervollständigung

0 20 40 60
Beispieldatenanzahl

0.0

0.2

0.4

0.6

0.8

1.0
F1

0 20 40 60
Beispieldatenanzahl

0.0

0.2

0.4

0.6

0.8

1.0

F2

CM1-NASA
Dronology
GANNT

Modis
WARC

Abbildung 5.10.:Ergebnisse von Experiment 4 (few-shot/multi-shot Prompting (PA3) mit intra-projekt
Datenaufteilung) - Durchschnittliche 𝐹1-Werte mit Standardabweichungen (links) und durchschnitt-

liche 𝐹2-Werte mit Standardabweichungen (rechts)

wird in dieser Auswertung der Fokus auf die Anzahl der TLs in den TBD und nicht auf die

TBD-Anzahl gelegt. Grund dafür ist, dass die TBD unterschiedliche Verteilung von TL zu

Nicht-TL besitzen.

Die durchschnittliche/regressierte Performance der Ansätze über alle Datensätze ist in Abbil-

dung 5.11 dargestellt. Die Leistungen der Ansätze auf jedem Datensatz sind in Abbildungen

des Anhangs aufgezeigt, wobei aber auch Ansätze dargestellt sind, die in diesem Szenario

nicht nutzbar sind. Der FA mit projekt-internen Trainingsdaten liegt bei einer geringen

TL-Anzahl unter zehn im Schnitt deutlich unter allen drei Prompting-Ansätzen. Im Bereich

um 15 TLs überschreitet der FA in diesem Szenario im Durchschnitt den einfachen zero-shot
Prompting-Ansatz (PA2), gemessen an den 𝐹1-Werten. Dies entspricht im Durchschnitt ca. 22

% der Projekt-TLs. Die Leistung des FA, gemessen an den 𝐹1-Werten, übersteigt ab ca. 45 TLs

in den Trainingsdaten die Performance vom zero-shot Prompting-Ansatz mit RAG (PA1), was

durchschnittlich etwa 66 % der Projekt-TLs entspricht. Ab dieser Schwelle liegen auch die

𝐹2-Werte des FA ca. auf dem Niveau beider zero-shot Prompting-Ansätze. Der FA überschrei-

tet nicht direkt few-shot/multi-shot Prompting, was daran liegt, dass nur bis maximal 30 TLs

in den Beispieldaten getestet wurde. Wenn die Leistung vom PA3 mit weiterer Steigerung

37

5. Szenarienbasierte Experimente und Auswertung

100 101 102

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten
(Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0

F1

100 101 102

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten
(Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0

F2

zero-shot Prompting mit RAG
zero-shot Prompting ohne RAG
few-shot/multi-shot Prompting mit intra-projekt DA
Feinanpassung mit intra-projekt DA

Abbildung 5.11.: Durchschnittliche/regressierte Ergebnisse über alle Datensätze für die Auswertung
von Szenario 3 (TL-Vervollständigung) - 𝐹1-Werte (links) und 𝐹2-Werte (rechts) - Spline-Regression

(geglättet, log-transformierte x-Werte)

der Beispielanzahl nicht mehr steigt, dann würde der FA few-shot/multi-shot Prompting

ab ca. 35 TLs (Durchschnittlich ca. 51 % der Projekt-TLs) im 𝐹1-Wert und ab ca. 90 TLs

(Durchschnittlich ca. 132 % der Projekt-TLs) im 𝐹2-Wert überschreiten. Die Performance, ge-

messen an den 𝐹1-Werten, vom few-shot/multi-shot Prompting liegt im Schnitt zwischen der

Performance vom zero-shot Prompting mit RAG und ohne RAG. Hinsichtlich der 𝐹2-Werte

übertrifft die durchschnittliche Performance des few-shot/multi-shot Promptings bereits ab

einem TL in den Beispieldaten die Leistung beider zero-shot Prompting-Ansätze.

Die Antwort auf die Forschungsfrage 3 lässt sich wie folgt zusammenfassen: Wenn sich

die Anzahl der TLs in den TBD erhöht, dann steigt auch die Leistung, wenn der Ansatz

annotierte Daten benötigt. Die Performance von few-shot/multi-shot Prompting ist bei

weniger TLs deutlich besser als beim FA, wobei der Anstieg in diesem Szenario deutlich

geringer ausfällt als bei der Feinanpassung. Bis zu durchschnittlich etwa 45 vorhandenen

TLs aus dem aktuellen Projekt erzielt zero-shot Prompting mit RAG die beste Performance

für die automatisierte TL-Vervollständigung, während ab einer höheren Anzahl an TLs der

FA überlegen ist.

38

5.5. Szenario 4: TL-Vervollständigung mit optionalem Wissenstransfer

Projekt 1 Projekt 2 . . . Projekt 𝑛

1 2
. . . 𝑘

projekt-externe TBD projekt-interne TBD Testdaten

durchmischen

stratifiziert aufteilen

durchmischen

Abbildung 5.12.: intra-cross-projekt Datenaufteilungsstrategie - 𝑛 entspricht der Anzahl an Projekten

- 𝑘 ∈ N+

5.5. Szenario 4: TL-Vervollständigung mit optionalem
Wissenstransfer

In diesem Szenario stehen dem Entwickler frühere Projekte mit dokumentierten TLs zur

Verfügung. Im aktuellen Projekt, auf welchem die TLR durchgeführt wird, stehen einige

TLs zur Verfügung bzw. beabsichtigt der Entwickler eigene Ressourcen für eine selbst-

ständige Annotation dieser TLs einzusetzen. Ziel des Entwicklers ist es, die restlichen

TLs des aktuellen Projekts zu ermitteln. Damit wird in diesem Szenario die TLR-Aufgabe

TL-Vervollständigung bearbeitet.

In diesem Szenario sind alle Ansätze geeignet, da annotierte Daten vorliegen. Zusätzlich sind

alle vorherigen Experimente auf dieses Szenario übertragbar, da sowohl projekt-interne als

auch projekt-externe Daten vorliegen. Dazu wird für dieses Szenario ein neues Experiment

mit dem FA (Experiment 5) durchgeführt, indem projekt-interne und -externe Daten für

das Training genutzt werden. Mit PA3 wird für dieses Szenario kein weiteres Experiment

durchgeführt, da die verfügbaren Ressourcen dieser Bachelorarbeit nur für maximal ein

Experiment, welches in Szenario 3 durchgeführt wird, ausreichen.

Für das Szenario und das zugehörige Experiment wird folgende Forschungsfrage 4 unter-

sucht: Welchen Einfluss hat Wissenstransfer aus anderen Projekten auf die Leistung bei

der automatisierten TL-Vervollständigung von HLRs zu LLRs mit Feinanpassung und wie

schneiden Feinanpassung und Prompting in diesem Kontext im Vergleich ab?

5.5.1. Experiment 5: Feinanpassungsansatz mit intra-cross-projekt
Datenaufteilung

Bei diesem Experiment wird der FA in Kombination mit der intra-cross-projekt DA, welche
in Abbildung 5.12 veranschaulicht ist, genutzt. Diese Strategie ist eine Kombination aus

der intra-projekt und der cross-projekt Datenaufteilungsstrategie. Bei dieser wird zuerst

39

5. Szenarienbasierte Experimente und Auswertung

BERT [8]

Mögliche

projekt-externe

Trainingsdaten

Mögliche

projekt-interne

Trainingsdaten

Testdaten

Tatsächliche Trainingsdaten

BERT [8] mit Feinanpassung

Testergebnisse

alle

Daten

wählen

𝑥-Daten

stratifiziert

wählen

trainieren

testen

𝑦-mal

wiederholen

Abbildung 5.13.: Ablauf von Experiment 5 (Feinanpassungsansatz mit intra-cross-projekt Daten-
aufteilung) - Ablauf wiederhole ich für jede Kombination aus Datensatz, Testmenge und Trai-

ningsdatenanzahl - 𝑥 ∈ {𝑧 ∈ {32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,maximum} |
𝑧-Daten sind möglich} - 𝑦 = 2

ein Projekt nach der intra-projekt Datenaufteilungsstrategie aufgeteilt. Dabei erhält man

eine Testmenge und eine Menge an TBD. Zu den TBD werden dann noch alle Daten aus

den anderen Projekten hinzugefügt. Jeder Datensatz wird bei diesem Experiment wieder

jeweils stratifiziert in fünf Mengen (𝑘 = 5) aufgeteilt. In diesem Experiment wird erneut

Kreuzvalidierung durchgeführt. Der Ablauf des Experiments ist in Abbildung 5.13 dargestellt.

Zum Training werden alle Daten aus der projekt-externen Trainingsdatenmenge und eine

bestimmte Anzahl aus der projekt-internen Trainingsdatenmenge stratifiziert entnommen.

Je Kombination aus Datensatz, Testmenge und Trainingsdatenanzahl werden zwei Modelle

erstellt. Die projekt-internen Trainingsdatenanzahlen werden gleich wie bei Experiment 3

gewählt.

Die Ergebnisse von Experiment 5 sind in Abbildung 5.14 dargestellt. Dazu ist Performance

wieder in Tabellen des Anhangs aufgezeigt. Im Schnitt steigen die Werte bei allen Datensät-

zen mit Steigerung der Anzahl projekt-interner Trainingsdaten fast dauerhaft mit Ausnahme

von Dronology, wo die durchschnittlichen 𝐹2-Werte bis 1024 Trainingsdaten sinken und

danach erst steigen. Der größte Anstieg der 𝐹1- und 𝐹2-Werte zeigt sich bei Modis und

der kleinste bei GANNT. Die Standardabweichungen bei Dronology sind deutlich geringer

verglichen mit den anderen Datensätzen. Zusätzlich schwanken die Standardabweichungen

bei den anderen Datensätzen stark.

40

5.5. Szenario 4: TL-Vervollständigung mit optionalem Wissenstransfer

102 103 104

projekt-interne Trainingsdatenanzahl
(Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0
F1

102 103 104

projekt-interne Trainingsdatenanzahl
(Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0

F2

CM1-NASA
Dronology
GANNT

Modis
WARC

Abbildung 5.14.: Ergebnisse von Experiment 5 (Feinanpassungsansatz mit intra-cross-projekt Daten-
aufteilung) - Durchschnittliche 𝐹1-Werte mit Standardabweichungen (links) und durchschnittliche

𝐹2-Werte mit Standardabweichungen (rechts)

5.5.2. Auswertung

Für die Auswertung wird sich ebenfalls wieder auf Vergleichsmöglichkeiten, die neu hinzu-

kommen, beschränkt. Bei Ansätzen, bei denen die TBD-Anzahl variiert wird, wird in dieser

Auswertung der Fokus erneut auf die Anzahl der TLs in den TBD gelegt.

Die durchschnittliche/regressierte Performance der Ansätze über alle Datensätze ist in

Abbildung 5.15 aufgezeigt und die Ergebnisse der Ansätze pro Datensatz sind in Abbil-

dungen des Anhangs abgebildet. In Bezug auf die 𝐹1- und 𝐹2-Werte zeigt der FA bereits

dann eine bessere Leistung im Durchschnitt, wenn neben projekt-externen Trainingsdaten

mindestens ein projekt-interner TL enthalten ist. Zusätzlich fällt die Leistung vom FA, ge-

messen an den beiden 𝐹𝛽-Werten, im Durchschnitt höher aus, wenn neben projekt-internen

auch projekt-externe Daten zum Training genutzt werden. Dieser Leistungszuwachs nimmt

mit zunehmender Menge projekt-interner Trainingsdaten ab. Hinsichtlich der 𝐹1-Werte

überschreitet der FA mit projekt-internen und -externen Trainingsdaten im Durchschnitt

ab ca. zwei projekt-internen TLs (Durchschnittlich ca. 3 % der Projekt-TLs) die Leistung des

few-shot/multi-shot Prompting-Ansatzes und liegt dauerhaft über dem zero-shot Prompting

41

5. Szenarienbasierte Experimente und Auswertung

100 101 102

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten
(Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0

F1

100 101 102

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten
(Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0

F2

zero-shot Prompting mit RAG
zero-shot Prompting ohne RAG
few-shot/multi-shot Prompting mit intra-projekt DA
Feinanpassung mit intra-projekt DA
Feinanpassung mit cross-projekt DA
Feinanpassung mit intra-cross-projekt DA

Abbildung 5.15.: Durchschnittliche/regressierte Ergebnisse über alle Datensätze für die Auswertung
von Szenario 4 (TL-Vervollständigung mit optionalem Wissenstransfer) - 𝐹1-Werte (links) und 𝐹2-

Werte (rechts) - Spline-Regression (geglättet, log-transformierte x-Werte)

Ansatz ohne RAG. Den zero-shot Prompting Ansatz mit RAG übertrifft der FA ab durch-

schnittlich 20 projekt-internen TLs in den Trainingsdaten, gemessen an den 𝐹1-Werten. Dies

sind im Schnitt etwa 29 % der Projekt-TLs. Bezüglich der 𝐹2-Werte überschreitet der FA mit

projekt-externen und -internen Trainingsdaten few-shot/multi-shot Prompting (PA3) mit

projekt-internen Beispielen nie direkt. Wenn die Leistung vom PA3 mit weiterer Steigerung

der Beispielanzahl nicht mehr steigt, dann würde der FA few-shot/multi-shot Prompting ab

ungefähr 90 TLs im 𝐹2-Wert überschreiten. In Bezug auf die 𝐹2-Werte überschreitet der FA

mit projekt-internen und -externen Trainingsdaten zero-shot Prompting ohne RAG ab unge-

fähr 15 TLs in den projekt-internen Trainingsdaten und zero-shot Prompting mit RAG ab ca.

25 TLs (Durchschnittlich ca. 37 % der Projekt-TLs). Der FA liegt durchschnittlich dauerhaft

unter der Leistung von allen Prompting-Ansätzen, wenn nur projekt-externe Trainingsdaten

genutzt werden. Außerdem ist dieser Ansatz mit den genutzten Trainingsdaten ab etwa

42

5.5. Szenario 4: TL-Vervollständigung mit optionalem Wissenstransfer

einer Anzahl von zehn TLs schlechter als der FA mit projekt-internen Trainingsdaten, was

im Schnitt ungefähr 15 % der Projekt-TLs sind.

Bezüglich der Forschungsfrage 4 ergeben sich folgende Erkenntnisse: Die Leistung ver-

bessert sich, wenn man bei der Feinanpassung zusätzlich projekt-externe Daten zu den

projekt-internen Trainingsdaten hinzufügt. Diese Verbesserung zeigt sich am stärksten,

wenn wenig projekt-interne TLs in den Trainingsdaten vorliegen. Unter 20 TLs im Durch-

schnitt in den projekt-internen Trainingsdaten liefert der PA1 (zero-shot Prompting mit

RAG) die beste Performance für die automatisierte TL-Vervollständigung, wenn projekt-

externe Daten vorliegen. Ab 20 TLs ist im Schnitt der FA mit projekt-internen und -externen

Trainingsdaten der Ansatz mit der besten Leistung.

43

6. Einschränkungen und Ausblick

In diesem Kapitel werden wichtige Grenzen dieser Bachelorarbeit zusammengefasst. Dabei

werden sowohl mögliche Bedrohungen der Validität als auch Limitierungen erläutert. Aus

letzteren ergeben sich zugleich Ansatzpunkte für zukünftige Arbeiten.

6.1. Bedrohungen der Validität

Es gibt verschiedene Eigenschaften der durchgeführten Experimente, die die Aussagekraft

der Ergebnisse möglicherweise beeinträchtigen. Um die Beeinträchtigungen abzuschwächen,

wurden, wenn möglich, verschiedene Maßnahmen unternommen.

6.1.1. Interne Validität

Eine potenzielle Gefährdung der internen Validität ergibt sich durch die Auswahl der TBD

und Testdaten, da beobachtete Leistungsunterschiede möglicherweise auf diese Auswahl

zurückzuführen sind. Für eine Reduktion dieser möglichen Gefahr wurde die zufällige Wahl

der TBD für jede TBD-Anzahl mehrfach durchgeführt. Dabei wurden immer die gleichen

Testdaten in Kombination mit Kreuzvalidierung genutzt und die Ergebnisse anschließend

gemittelt.

Die Auswahl der Datensätze bedroht unter Umständen ebenfalls die interne Validität [21].

Um diese Bedrohungen zu reduzieren, wurden bekannte Datensätze genutzt, welche von

der Forschungsgemeinschaft schon mehrfach verwendet wurden [13, 21].

Eine weitere mögliche Gefährdung der internen Validität stellt die Verwendung von open-
sourceDatensätzen dar. Dadurch fand das Vortraining der PLMsmöglicherweise auchmit den

Daten der Datensätze statt, wodurch die Experimente eventuell nicht die Leistungsfähigkeit

der Ansätze ermittelten, sondern nur, ob die PLMs bekannte Daten wiedererkannten.

6.1.2. Externe Validität

Die open-source Eigenschaft der Datensätze ist zusätzlich eine Bedrohung der externen Vali-

dität, da sich die Ergebnisse möglicherweise nicht auf closed-source Datensätze übertragen
lassen [21].

45

6. Einschränkungen und Ausblick

Außerdem sind die Datensätze teilweise relativ alt [21]. Dies stellt auch eine Gefährdung

der Validität dar, da die Übertragbarkeit der Ergebnisse auf modernere Datensätze mögli-

cherweise eingeschränkt ist [21].

Zusätzlich zeigten Fuchß u. a. [10] und Hey u. a. [21], dass die Datensätze teilweise viele

Artefakte enthalten, die keinem TL zugeordnet sind. Diese Eigenschaft kann darauf hindeu-

ten, dass die Datensätze unvollständig sind [10, 21]. Daraus ergibt sich möglicherweise eine

Beeinträchtigung der externen Validität, da sich die Ergebnisse gegebenenfalls nicht auf

vollständige Datensätze übertragen lassen [24].

Eine weitere potenzielle Bedrohung der Validität ergibt sich durch die Art, wie die Hyper-

parameteroptimierung durchgeführt wurde. Diese lässt sich nicht direkt auf realistische

Anwendungsszenarien übertragen, da bei der durchgeführten Hyperparameteroptimierung

alle verfügbaren Daten verwendet wurden, welche in realen Szenarien nicht vorliegen.

Dazu zeigen die genutzten PLMs nichtdeterministisches Verhalten [21, 34]. Um diese even-

tuelle Bedrohung möglichst weitgehend zu reduzieren, wurde, wenn möglich, ein fester

Zufallswert verwendet und die Temperatur auf null gesetzt [21].

6.1.3. Konstruktvalidität

Eine mögliche Bedrohung der Konstruktvalidität ergibt sich durch die Auswahl der Prompts,

Modelle und Metriken, da diese Festlegungen die Ergebnisse beeinflussen [11, 18]. Um diese

Bedrohung zu verringern, wurden nur Modelle verwendet, die von der Forschung bereits

genutzt wurden. Darüber hinaus wurden ausschließlich Prompts genutzt, die entweder

in früheren Arbeiten verwendet oder auf Basis dieser abgeleitet wurden. Des Weiteren

wurden die Metriken ausgewählt, die am häufigsten von der Forschung für die TLR genutzt

wurden.

6.2. Limitierungen und zukünftige Arbeiten

Es gibt verschiedene mögliche Limitierungen dieser Bachelorarbeit, die sich aufgrund be-

grenzter Ressourcen, wie z.B. Zeit oder Geld, ergaben. Diese Limitierungen bieten Potenzial

für zukünftige Arbeiten.

Bei den Untersuchungen wurden die PLMs für jeden Ansatz festgesetzt. Verwandte Arbeiten

zeigten in der Vergangenheit aber, dass die Nutzung anderer PLMs die Performance stark ver-

ändern kann [11, 21, 24]. Arbeiten sollten deswegen in der Zukunft meine Experimente mit

anderen Grundmodellen wiederholen, da so ein vollständigerer Vergleich ermöglicht wird.

Dabei können beispielsweise modernere Modelle, wie GPT-5 oder Deepseek-R1, genutzt

und/oder open-source Modelle verwendet werden.

In dieser Arbeit wurde nur ein FA evaluiert. In der Forschung wurden auch verschiede-

ne andere Ansätze erstellt und evaluiert, die Feinanpassung nutzen, welche in Zukunft

zu diesem Vergleich hinzugefügt werden sollte. Diese Ansätze verwenden beispielsweise

46

6.2. Limitierungen und zukünftige Arbeiten

LoRa [22], Prompt-Tuning [23], P-Tuning-v2 [27], Dekodierer-PLMs und/oder Lückentext-

aufgaben. Zusätzlich wenden diese Ansätze teilweise Datenaugmentierung an, wodurch

die Trainingsdaten künstlich erweitert werden, ohne dass man mehr annotierte Daten

benötigt.

Bei den Experimenten wurde aufgezeigt, dass sowohl RAG als auch few-shot/multi-shot
Prompting verglichen mit zero-shot Prompting bessere Ergebnisse erzielen. Zukünftige

Arbeiten sollten also überprüfen, ob eine Kombination aus RAG und few-shot/multi-shot
Prompting die Leistung weiter steigern kann. Aufgrund begrenzter Ressourcen war es au-

ßerdem nicht möglich, die unterschiedlichen Prompting-Ansätze mit variierenden Prompts

zu evaluieren und beim few-shot/multi-shot Prompting andere TL zu Nicht-TL Verhält-

nisse zu testen. Zusätzlich konnte nicht getestet werden, wie gut die Leistung von few-
shot/multi-shot Prompting ist, wenn man projekt-externe Beispiele und eine Kombination

aus projekt-internen und -externen Beispielen nutzt.

Darüber hinaus konnte in dieser Bachelorarbeit nur die Requirements Engineering-Aufgabe
TLR betrachtet werden. Wie Feinanpassung und Prompting im Vergleich auf anderen

Requirements Engineering-Aufgaben, wie beispielsweise der Anforderungsklassifikation,
abschneiden, sollte in zukünftigen Arbeiten untersucht werden.

47

7. Fazit

Das Hauptziel dieser Bachelorarbeit bestand darin, zu ermitteln, mit welcher Anzahl an

TBD unter welchen Bedingungen welcher Feinanpassungs- oder Prompting-Ansatz bei der

vollautomatisierten TLR von HLRs zu LLRs die beste Performance erzielt. Dazu wurde ein

Vergleich auf fünf Datensätzen/Projekten durchgeführt. Für den Vergleich wurden zunächst

geeignete TLR-Ansätze aus der Forschung identifiziert und bei Bedarf selbst implemen-

tiert. Anschließend wurden vier realistische Szenarien konzipiert, die als Grundlage für

den Vergleich dienten und bei denen die beiden TLR-Aufgaben TL-Generierung und TL-

Vervollständigung bearbeitet wurden. Insgesamt wurden fünf Experimente durchgeführt,

um fehlende Ergebnisse zu ermitteln.

Beim Vergleich zeigte sich, dass zero-shot Prompting mit RAG von Fuchß u. a. [11] und Hey

u. a. [21] in Bezug auf die 𝐹1-Werte im Durchschnitt der Ansatz mit der besten Performance

bei der TL-Generierung ist. Bei dieser müssen alle TLs eines Projekts ermittelt werden.

Bei der TL-Vervollständigung, bei der bereits TLs des Projekts vorliegen und der Rest

ermittelt werden muss, liefert zero-shot Prompting mit RAG bei wenigen vorhandenen

TLs die besten Ergebnisse, gemessen an den 𝐹1-Werten. Wenn frühere annotierte Projekte

vorliegen, dann übersteigt Feinanpassung zero-shot Prompting mit RAG ab ungefähr 20

vorhandenen projekt-internen TLs in den 𝐹1-Werten. Wenn keine früheren annotierten

Projekte vorhanden sind, übersteigt Feinanpassung in den 𝐹1-Werten zero-shot Prompting

mit RAG erst ab etwa 45 vorhandenen TLs.

Die Ergebnisse bedeuten, dass zero-shot Prompting mit RAG in Bezug auf die Performance

in den meisten Fällen der aktuell beste vollautomatisierte Ansatz für die TLR ist. Wenn bei

einem größeren Projekt bereits viele projekt-interne TLs vorliegen und/oder wenn frühere

annotierte Projekte vorhanden sind, dann kann sich Feinanpassung möglicherweise lohnen.

Bei kleineren Projekten, die eine ähnliche oder geringere Größe wie CM1-NASA oder

GANNT haben, ist Feinanpassung im Durchschnitt nicht geeignet, wenn keine früheren

annotierten Projekte verfügbar sind. Grund dafür ist, dass für eine bessere Performance

mehr TLs benötigt werden, als in den Datensätzen vorhanden sind. Allerdings hängen die

Ergebnisse auch stark vom jeweiligen Datensatz ab, was sich insbesondere an Modis zeigt,

bei dem Feinanpassung bereits bei deutlich weniger TLs besser wird als Prompting. Damit

wird deutlich, dass kein Ansatz universell überlegen ist.

Es ist wichtig hervorzuheben, dass die Validität der Ergebnisse unter Umständen beispiels-

weise durch die genutzten Testdatensätze beeinträchtigt sein kann. Außerdem ist dieser

Vergleich nicht vollständig, da deutlich mehr TLR-Ansätze und -Ansatzvarianten mit un-

terschiedlichen Variablen (Prompts, Modelle, usw.) existieren, als in dieser Bachelorarbeit

49

7. Fazit

betrachtet werden konnten. Der Vergleich sollte dementsprechend von zukünftigen Arbeiten

um neue Ansätze und weitere Testdatensätze erweitert werden.

50

Literatur

[1] Nouf Alturayeif, Jameleddine Hassine und Irfan Ahmad. „Machine Learning Ap-

proaches for Automated Software Traceability: A Systematic Literature Review“.

In: Journal of Systems and Software 230 (Dez. 2025), S. 112536. issn: 0164-1212. doi:
10.1016/j.jss.2025.112536. (Besucht am 01. 07. 2025).

[2] G. Antoniol u. a. „Recovering Traceability Links between Code and Documentation“.

In: IEEE Transactions on Software Engineering 28.10 (Okt. 2002), S. 970–983. issn:

0098-5589, 1939-3520, 2326-3881. doi: 10.1109/TSE.2002.1041053. (Besucht am

30. 06. 2025).

[3] Yoshua Bengio u. a. „A Neural Probabilistic Language Model“. In: Journal of Machine
Learning Research 3 (Feb. 2003). (Besucht am 01. 07. 2025).

[4] Tom B. Brown u. a. Language Models Are Few-Shot Learners. Juli 2020. doi: 10.48550/
arXiv.2005.14165. arXiv: 2005.14165 [cs]. (Besucht am 15. 07. 2025).

[5] Boqi Chen, Fandi Yi und Dániel Varró. „Prompting or Fine-tuning? A Comparative

Study of Large Language Models for Taxonomy Construction“. In: 2023 ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems Compan-
ion (MODELS-C). Västerås, Sweden: IEEE, Okt. 2023, S. 588–596. doi: 10.1109/models-
c59198.2023.00097. (Besucht am 08. 07. 2025).

[6] Davide Dell’Anna, Fatma Başak Aydemir und Fabiano Dalpiaz. „Evaluating Classifiers

in SE Research: The ECSER Pipeline and Two Replication Studies“. In: Empirical
Software Engineering 28.1 (Nov. 2022). issn: 1573-7616. doi: 10.1007/s10664-022-

10243-1. (Besucht am 01. 07. 2025).

[7] Yang Deng u. a. „PromptLink: Multi-template Prompt Learning with Adversarial Trai-

ning for Issue-Commit Link Recovery“. In: Proceedings of the 18th ACM/IEEE Internatio-
nal Symposium on Empirical Software Engineering and Measurement. Barcelona Spain:
ACM, Okt. 2024, S. 461–467. isbn: 979-8-4007-1047-6. doi: 10.1145/3674805.3690751.

(Besucht am 03. 06. 2025).

[8] Jacob Devlin u. a. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. Mai 2019. doi: 10.48550/arXiv.1810.04805. arXiv: 1810.04805 [cs].

(Besucht am 08. 07. 2025).

[9] Romina Etezadi u. a. Classification or Prompting: A Case Study on Legal Requirements
Traceability. Feb. 2025. doi: 10.48550/arXiv.2502.04916. arXiv: 2502.04916 [cs].

(Besucht am 03. 06. 2025).

51

https://doi.org/10.1016/j.jss.2025.112536
https://doi.org/10.1109/TSE.2002.1041053
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1109/models-c59198.2023.00097
https://doi.org/10.1109/models-c59198.2023.00097
https://doi.org/10.1007/s10664-022-10243-1
https://doi.org/10.1007/s10664-022-10243-1
https://doi.org/10.1145/3674805.3690751
https://doi.org/10.48550/arXiv.1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.2502.04916
https://arxiv.org/abs/2502.04916

Literatur

[10] Dominik Fuchß u. a. „Beyond Retrieval: A Study of Using LLM Ensembles for Candi-

date Filtering in Requirements Traceability“. In: 2025 IEEE 33rd International Requi-
rements Engineering Conference Workshops (REW). Valencia, Spain: IEEE, Sep. 2025,
S. 5–12. isbn: 979-8-3315-3834-7. doi: 10.1109/REW66121.2025.00006. (Besucht am

27. 10. 2025).

[11] Dominik Fuchß u. a. „LiSSA: Toward Generic Traceability Link Recovery through

Retrieval-Augmented Generation“. In: 2025 IEEE/ACM 47th International Conference
on Software Engineering (ICSE). IEEE Computer Society, März 2025, S. 723–723. isbn:

979-8-3315-0569-1. doi: 10.1109/ICSE55347.2025.00186. (Besucht am 18. 03. 2025).

[12] Hui Gao u. a. „TRIAD: Automated Traceability Recovery Based on Biterm-enhanced

Deduction of Transitive Links among Artifacts“. In: Proceedings of the IEEE/ACM
46th International Conference on Software Engineering. ICSE ’24. New York, NY, USA:

Association for Computing Machinery, Apr. 2024, S. 1–13. isbn: 979-8-4007-0217-4.

doi: 10.1145/3597503.3639164. (Besucht am 19. 02. 2025).

[13] ChuyanGe u. a. „Cross-Level Requirements Tracing Based on Large LanguageModels“.

In: IEEE Transactions on Software Engineering (2025), S. 1–23. issn: 0098-5589, 1939-

3520, 2326-3881. doi: 10.1109/TSE.2025.3572094. (Besucht am 01. 07. 2025).

[14] Orlena Gotel u. a. „Traceability Fundamentals“. In: Software and Systems Traceability.
Hrsg. von Jane Cleland-Huang, Orlena Gotel und Andrea Zisman. London: Springer,

2012, S. 3–22. isbn: 978-1-4471-2239-5. doi: 10.1007/978-1-4471-2239-5_1. (Besucht

am 01. 07. 2025).

[15] Jin Guo, Jinghui Cheng und Jane Cleland-Huang. „Semantically Enhanced Software

Traceability Using Deep Learning Techniques“. In: Proceedings of the 39th International
Conference on Software Engineering. ICSE ’17. Piscataway, NJ, USA: IEEE Press, 2017,

S. 3–14. isbn: 978-1-5386-3868-2. doi: 10.1109/ICSE.2017.9. (Besucht am 01. 07. 2025).

[16] Jin L. C. Guo u. a. „Natural Language Processing for Requirements Traceability“. In:

Handbook on Natural Language Processing for Requirements Engineering. Hrsg. von
Alessio Ferrari und Gouri Ginde. Cham: Springer Nature Switzerland, 2025, S. 89–

116. isbn: 978-3-031-73143-3. doi: 10.1007/978-3-031-73143-3_4. (Besucht am

13. 05. 2025).

[17] J.H. Hayes, A. Dekhtyar und S.K. Sundaram. „Advancing Candidate Link Generation

for Requirements Tracing: The Study of Methods“. In: IEEE Transactions on Software
Engineering 32.1 (Jan. 2006), S. 4–19. issn: 0098-5589. doi: 10.1109/TSE.2006.3.

(Besucht am 30. 06. 2025).

[18] Tobias Hey. „Automatische Wiederherstellung von Nachverfolgbarkeit zwischen

Anforderungen und Quelltext“. Diss. 2023. (Besucht am 01. 07. 2025).

[19] Tobias Hey, Jan Keim und Sophie Corallo. „Requirements Classification for Tracea-

bility Link Recovery“. In: 2024 IEEE 32nd International Requirements Engineering
Conference (RE). Reykjavik, Iceland: IEEE, Juni 2024, S. 155–167. isbn: 979-8-3503-
9511-2. doi: 10.1109/RE59067.2024.00024. (Besucht am 05. 09. 2025).

52

https://doi.org/10.1109/REW66121.2025.00006
https://doi.org/10.1109/ICSE55347.2025.00186
https://doi.org/10.1145/3597503.3639164
https://doi.org/10.1109/TSE.2025.3572094
https://doi.org/10.1007/978-1-4471-2239-5_1
https://doi.org/10.1109/ICSE.2017.9
https://doi.org/10.1007/978-3-031-73143-3_4
https://doi.org/10.1109/TSE.2006.3
https://doi.org/10.1109/RE59067.2024.00024

[20] Tobias Hey u. a. „Improving Traceability Link Recovery Using Fine-grained Require-

ments-to-Code Relations“. In: 2021 IEEE International Conference on Software Main-
tenance and Evolution (ICSME). Sep. 2021, S. 12–22. doi: 10.1109/ICSME52107.2021.
00008. (Besucht am 01. 07. 2025).

[21] Tobias Hey u. a. „Requirements Traceability Link Recovery via Retrieval-Augmented

Generation“. In: Requirements Engineering: Foundation for Software Quality. Hrsg.
von Anne Hess und Angelo Susi. Cham: Springer Nature Switzerland, 2025, S. 381–

397. isbn: 978-3-031-88531-0. doi: 10.1007/978-3-031-88531-0_27. (Besucht am

01. 07. 2025).

[22] Edward J. Hu u. a. LoRA: Low-Rank Adaptation of Large Language Models. Okt. 2021.
doi: 10.48550/arXiv.2106.09685. arXiv: 2106.09685 [cs]. (Besucht am 02. 07. 2025).

[23] Brian Lester, Rami Al-Rfou und Noah Constant. The Power of Scale for Parameter-
Efficient Prompt Tuning. Sep. 2021. doi: 10.48550/arXiv.2104.08691. arXiv: 2104.
08691 [cs]. (Besucht am 21. 07. 2025).

[24] Jinfeng Lin u. a. „Enhancing Automated Software Traceability by Transfer Learning

from Open-World Data“. In: CoRR (Jan. 2022). (Besucht am 01. 07. 2025).

[25] Jinfeng Lin u. a. „Traceability Transformed: Generating More Accurate Links with

Pre-Trained BERT Models“. In: Proceedings of the 43rd International Conference on
Software Engineering. ICSE ’21. Madrid, Spain: IEEE Press, Nov. 2021, S. 324–335. isbn:

978-1-4503-9085-9. doi: 10.1109/ICSE43902.2021.00040. (Besucht am 01. 07. 2025).

[26] Tianyang Lin u. a. „A Survey of Transformers“. In: AI Open 3 (2022), S. 111–132. issn:

2666-6510. doi: 10.1016/j.aiopen.2022.10.001. (Besucht am 18. 07. 2025).

[27] Xiao Liu u. a. P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally
Across Scales and Tasks. März 2022. doi: 10.48550/arXiv.2110.07602. arXiv: 2110.

07602 [cs]. (Besucht am 21. 07. 2025).

[28] Ali Majidzadeh, Mehrdad Ashtiani und Morteza Zakeri-Nasrabadi. „Multi-Type Re-

quirements Traceability Prediction by Code Data Augmentation and Fine-Tuning

MS-CodeBERT“. In: Computer Standards & Interfaces 90 (Aug. 2024), S. 103850. issn:
09205489. doi: 10.1016/j.csi.2024.103850. (Besucht am 01. 07. 2025).

[29] Chris Mills, Javier Escobar-Avila und Sonia Haiduc. „Automatic Traceability Mainte-

nance via Machine Learning Classification“. In: 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME). Madrid: IEEE, Sep. 2018, S. 369–380.

isbn: 978-1-5386-7870-1. doi: 10.1109/ICSME.2018.00045. (Besucht am 24. 05. 2025).

[30] Chris Mills u. a. „Tracing with Less Data: Active Learning for Classification-Based

Traceability Link Recovery“. In: 2019 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). Sep. 2019, S. 103–113. doi: 10.1109/ICSME.2019.00020.
(Besucht am 01. 07. 2025).

53

https://doi.org/10.1109/ICSME52107.2021.00008
https://doi.org/10.1109/ICSME52107.2021.00008
https://doi.org/10.1007/978-3-031-88531-0_27
https://doi.org/10.48550/arXiv.2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.48550/arXiv.2104.08691
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://doi.org/10.1109/ICSE43902.2021.00040
https://doi.org/10.1016/j.aiopen.2022.10.001
https://doi.org/10.48550/arXiv.2110.07602
https://arxiv.org/abs/2110.07602
https://arxiv.org/abs/2110.07602
https://doi.org/10.1016/j.csi.2024.103850
https://doi.org/10.1109/ICSME.2018.00045
https://doi.org/10.1109/ICSME.2019.00020

Literatur

[31] Kevin Moran u. a. „Improving the Effectiveness of Traceability Link Recovery Using

Hierarchical Bayesian Networks“. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. ICSE ’20. New York, NY, USA: Association for

Computing Machinery, Juni 2020, S. 873–885. isbn: 978-1-4503-7121-6. doi: 10.1145/

3377811.3380418. (Besucht am 01. 07. 2025).

[32] NASA Systems Engineering Handbook. (Besucht am 01. 09. 2025).

[33] Feifei Niu u. a. TVR: Automotive System Requirement Traceability Validation and Reco-
very Through Retrieval-Augmented Generation. Apr. 2025. doi: 10.48550/arXiv.2504.
15427. arXiv: 2504.15427 [cs]. (Besucht am 03. 06. 2025).

[34] OpenAI. GPT-4o-Model. https://platform.openai.com/docs/models/gpt-4o. (Besucht

am 21. 07. 2025).

[35] OpenAI. OpenAI API Reference — Completions. https://platform.openai.com/docs/api-

reference/completions. (Besucht am 21. 07. 2025).

[36] Branislav Pecher, Ivan Srba und Maria Bielikova. Comparing Specialised Small and
General Large Language Models on Text Classification: 100 Labelled Samples to Achieve
Break-Even Performance. Mai 2025. doi: 10.48550/arXiv.2402.12819. arXiv: 2402.

12819 [cs]. (Besucht am 08. 07. 2025).

[37] Klaus Pohl. Requirements Engineering: Fundamentals, Principles, and Techniques. Jan.
2010. isbn: 978-3-662-51888-5.

[38] Alec Radford u. a. Improving Language Understanding by Generative Pre-Training. 2018.
(Besucht am 01. 07. 2025).

[39] Alec Radford u. a. LanguageModels Are UnsupervisedMultitask Learners. 2019. (Besucht
am 01. 07. 2025).

[40] Alberto D. Rodriguez, Katherine R. Dearstyne und Jane Cleland-Huang. „Prompts

Matter: Insights and Strategies for Prompt Engineering in Automated Software Tra-

ceability“. In: 2023 IEEE 31st International Requirements Engineering Conference Work-
shops (REW). Sep. 2023, S. 455–464. doi: 10.1109/REW57809.2023.00087. (Besucht am
24. 09. 2024).

[41] Ashish Vaswani u. a. „Attention Is All You Need“. In: Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems. NIPS’17. Red Hook, NY,

USA: Curran Associates Inc., 2017, S. 6000–6010. isbn: 978-1-5108-6096-4.

[42] Joel Walsh u. a. Fine-Tuning for Better Few Shot Prompting: An Empirical Comparison
for Short Answer Grading. 2025. doi: 10.48550/ARXIV.2508.04063. (Besucht am
06. 09. 2025).

[43] Bangchao Wang u. a. „MPLinker: Multi-template Prompt-tuning with Adversarial

Training for Issue–Commit Link Recovery“. In: Journal of Systems and Software 223
(Mai 2025), S. 112351. issn: 01641212. doi: 10.1016/j.jss.2025.112351. (Besucht am

03. 06. 2025).

54

https://doi.org/10.1145/3377811.3380418
https://doi.org/10.1145/3377811.3380418
https://doi.org/10.48550/arXiv.2504.15427
https://doi.org/10.48550/arXiv.2504.15427
https://arxiv.org/abs/2504.15427
https://doi.org/10.48550/arXiv.2402.12819
https://arxiv.org/abs/2402.12819
https://arxiv.org/abs/2402.12819
https://doi.org/10.1109/REW57809.2023.00087
https://doi.org/10.48550/ARXIV.2508.04063
https://doi.org/10.1016/j.jss.2025.112351

A. Anhang

A.1. Ergänzende Materialien zu den Datensätzen

CM1-NASA Dronology GANNT Modis WARC
Datensätze

0

50

100

150

200

250

300

350

400

BE
RT

-T
ok

en
-A

nz
ah

l

High-Level-Anforderungen
Low-Level-Anforderungen

Abbildung A.1.: Anzahl der Tokens für BERT in den Anforderungen der Datensätze

55

A. Anhang

CM1-NASA Dronology GANNT Modis WARC
Datensätze

0

50

100

150

200

250

300

GP
T4

o(
-m

in
i)-

To
ke

n-
A

nz
ah

l

High-Level-Anforderungen
Low-Level-Anforderungen

Abbildung A.2.: Anzahl der Tokens für GPT-4o(-mini) in den Anforderungen der Datensätze

A.2. Ergänzende Materialien zu Experiment 3

Trainings-

datenanzahl

TL-Anzahl

in den

Trainings-

daten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

32 1 0,038 0,079 0,031 0,067

64 2 0,088 0,105 0,069 0,084

128 5 0,124 0,121 0,106 0,103

256 10 0,171 0,142 0,164 0,140

512 20 0,334 0,141 0,311 0,138

{932, 933} 36 0,432 0,118 0,414 0,119

Tabelle A.1.: Ergebnisse auf CM1-NASA von Experiment 3 (Feinanpassungsansatz mit intra-projekt
Datenaufteilung)

56

A.2. Ergänzende Materialien zu Experiment 3

Trainings-

datenanzahl

TL-Anzahl

in den

Trainings-

daten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

32 0 0,021 0,000 0,051 0,000

64 1 0,040 0,055 0,047 0,061

128 1 0,033 0,032 0,026 0,027

256 3 0,071 0,053 0,063 0,047

512 5 0,146 0,093 0,126 0,085

1024 11 0,353 0,083 0,313 0,089

2048 22 0,419 0,077 0,397 0,090

4096 43 0,529 0,066 0,525 0,081

8192 86 0,602 0,069 0,614 0,068

16384 173 0,682 0,045 0,694 0,048

{16711, 16712} 176 0,691 0,053 0,700 0,046

Tabelle A.2.: Ergebnisse auf Dronology von Experiment 3 (Feinanpassungsansatz mit intra-projekt
Datenaufteilung)

Trainings-

datenanzahl

TL-Anzahl

in den

Trainings-

daten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

32 2 0,053 0,088 0,044 0,075

64 4 0,082 0,085 0,076 0,079

128 7 0,147 0,103 0,131 0,103

256 15 0,210 0,108 0,194 0,109

512 {29, 30} 0,287 0,104 0,289 0,123

{938, 939} {54, 55} 0,343 0,094 0,344 0,113

Tabelle A.3.: Ergebnisse auf GANNT von Experiment 3 (Feinanpassungsansatz mit intra-projekt
Datenaufteilung)

57

A. Anhang

Trainings-

datenanzahl

TL-Anzahl

in den

Trainings-

daten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

32 1 0,302 0,214 0,343 0,246

64 3 0,415 0,202 0,423 0,233

128 6 0,499 0,211 0,528 0,238

256 11 0,560 0,189 0,570 0,226

512 {22, 23} 0,590 0,132 0,621 0,166

{744, 745} {32, 33} 0,691 0,110 0,700 0,139

Tabelle A.4.: Ergebnisse auf Modis von Experiment 3 (Feinanpassungsansatz mit intra-projekt Daten-
aufteilung)

Trainings-

datenanzahl

TL-Anzahl

in den

Trainings-

daten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

32 1 0,036 0,042 0,029 0,034

64 2 0,058 0,033 0,051 0,032

128 3 0,089 0,060 0,081 0,060

256 6 0,105 0,071 0,091 0,066

512 12 0,189 0,075 0,159 0,064

1024 25 0,372 0,110 0,346 0,108

2048 {49, 50} 0,530 0,054 0,522 0,064

4096 {99, 100} 0,608 0,082 0,592 0,084

{4485, 4486} {108, 109} 0,622 0,083 0,621 0,090

Tabelle A.5.: Ergebnisse auf WARC von Experiment 3 (Feinanpassungsansatz mit intra-projekt Da-
tenaufteilung)

58

A.3. Ergänzende Materialien zu Experiment 4

A.3. Ergänzende Materialien zu Experiment 4

Beispiel-

datenanzahl

TL-Anzahl

in den

Beispieldaten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

2 1 0,287 0,064 0,473 0,084

4 2 0,316 0,048 0,505 0,070

6 3 0,334 0,070 0,512 0,093

8 4 0,333 0,085 0,510 0,107

10 5 0,319 0,071 0,499 0,099

20 10 0,336 0,063 0,519 0,080

30 15 0,309 0,059 0,496 0,091

40 20 0,327 0,065 0,509 0,081

50 25 0,338 0,090 0,523 0,113

60 30 0,352 0,072 0,536 0,084

Tabelle A.6.: Ergebnisse auf CM1-NASA von Experiment 4 (few-shot/multi-shot Prompting (PA3) mit

intra-projekt Datenaufteilung)

Beispiel-

datenanzahl

TL-Anzahl

in den

Beispieldaten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

2 1 0.257 0.040 0.439 0.048

4 2 0.259 0.069 0.434 0.077

6 3 0.287 0.051 0.463 0.049

8 4 0.270 0.029 0.457 0.032

10 5 0.298 0.078 0.474 0.071

20 10 0.280 0.043 0.465 0.042

30 15 0.330 0.039 0.509 0.039

40 20 0.341 0.032 0.506 0.033

50 25 0.351 0.036 0.524 0.028

60 30 0.353 0.045 0.516 0.038

Tabelle A.7.: Ergebnisse auf Dronology von Experiment 4 (few-shot/multi-shot Prompting (PA3) mit

intra-projekt Datenaufteilung)

59

A. Anhang

Beispiel-

datenanzahl

TL-Anzahl

in den

Beispieldaten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

2 1 0,379 0,049 0,578 0,050

4 2 0,400 0,054 0,591 0,058

6 3 0,413 0,060 0,601 0,063

8 4 0,419 0,046 0,607 0,056

10 5 0,428 0,037 0,609 0,058

20 10 0,433 0,043 0,592 0,056

30 15 0,451 0,045 0,585 0,067

40 20 0,473 0,054 0,621 0,055

50 25 0,498 0,054 0,621 0,061

60 30 0,493 0,061 0,621 0,069

Tabelle A.8.: Ergebnisse auf GANNT von Experiment 4 (few-shot/multi-shot Prompting (PA3) mit

intra-projekt Datenaufteilung)

Beispiel-

datenanzahl

TL-Anzahl

in den

Beispieldaten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

2 1 0,498 0,092 0,549 0,114

4 2 0,527 0,088 0,604 0,137

6 3 0,543 0,097 0,620 0,147

8 4 0,567 0,099 0,644 0,128

10 5 0,553 0,149 0,626 0,175

20 10 0,559 0,125 0,596 0,151

30 15 0,551 0,135 0,587 0,163

40 20 0,589 0,102 0,639 0,124

50 25 0,569 0,098 0,630 0,126

60 30 0,559 0,095 0,636 0,128

Tabelle A.9.: Ergebnisse auf Modis von Experiment 4 (few-shot/multi-shot Prompting (PA3) mit

intra-projekt Datenaufteilung)

60

A.4. Ergänzende Materialien zu Experiment 5

Beispiel-

datenanzahl

TL-Anzahl

in den

Beispieldaten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

2 1 0.375 0.090 0.542 0.082

4 2 0.400 0.073 0.575 0.069

6 3 0.423 0.060 0.592 0.062

8 4 0.438 0.067 0.607 0.070

10 5 0.461 0.063 0.628 0.075

20 10 0.492 0.077 0.637 0.082

30 15 0.483 0.065 0.642 0.072

40 20 0.492 0.071 0.646 0.087

50 25 0.482 0.064 0.639 0.076

60 30 0.511 0.059 0.658 0.071

Tabelle A.10.: Ergebnisse auf WARC von Experiment 4 (few-shot/multi-shot Prompting (PA3) mit

intra-projekt Datenaufteilung)

A.4. Ergänzende Materialien zu Experiment 5

projekt-

interne

Trainings-

datenanzahl

TL-Anzahl

in den

projekt-

internen

Trainings-

daten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

32 1 0,267 0,170 0,222 0,148

64 2 0,288 0,138 0,235 0,118

128 5 0,298 0,212 0,254 0,195

256 10 0,371 0,196 0,324 0,170

512 20 0,443 0,086 0,384 0,070

{932, 933} 36 0,459 0,095 0,398 0,064

Tabelle A.11.: Ergebnisse auf CM1-NASA von Experiment 5 (Feinanpassungsansatz mit intra-cross-
projekt Datenaufteilung)

61

A. Anhang

projekt-

interne

Trainings-

datenanzahl

TL-Anzahl

in den

projekt-

internen

Trainings-

daten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

32 0 0,459 0,052 0,551 0,049

64 1 0,464 0,045 0,564 0,041

128 1 0,490 0,038 0,530 0,023

256 3 0,523 0,048 0,506 0,053

512 5 0,539 0,031 0,525 0,038

1024 11 0,500 0,064 0,450 0,079

2048 22 0,535 0,057 0,482 0,054

4096 43 0,579 0,046 0,539 0,065

8192 86 0,652 0,062 0,629 0,078

16384 173 0,714 0,047 0,698 0,046

{16711, 16712} 176 0,710 0,039 0,691 0,061

Tabelle A.12.: Ergebnisse auf Dronology von Experiment 5 (Feinanpassungsansatz mit intra-cross-
projekt Datenaufteilung)

projekt-

interne

Trainings-

datenanzahl

TL-Anzahl

in den

projekt-

internen

Trainings-

daten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

32 2 0,357 0,152 0,316 0,143

64 4 0,285 0,124 0,253 0,115

128 7 0,321 0,132 0,285 0,152

256 15 0,328 0,118 0,303 0,117

512 {29, 30} 0,350 0,125 0,334 0,135

{938, 939} {54, 55} 0,436 0,092 0,442 0,118

Tabelle A.13.:Ergebnisse auf GANNT von Experiment 5 (Feinanpassungsansatz mit intra-cross-projekt
Datenaufteilung)

62

A.4. Ergänzende Materialien zu Experiment 5

projekt-

interne

Trainings-

datenanzahl

TL-Anzahl

in den

projekt-

internen

Trainings-

daten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

32 1 0,287 0,197 0,223 0,160

64 3 0,582 0,182 0,499 0,198

128 6 0,617 0,172 0,557 0,193

256 11 0,646 0,137 0,594 0,175

512 {22, 23} 0,708 0,117 0,691 0,139

{744, 745} {32, 33} 0,783 0,098 0,775 0,121

Tabelle A.14.: Ergebnisse auf Modis von Experiment 5 (Feinanpassungsansatz mit intra-cross-projekt
Datenaufteilung)

projekt-

interne

Trainings-

datenanzahl

TL-Anzahl

in den

projekt-

internen

Trainings-

daten

𝐹1-

Durchschnitt

𝐹1-

Standard-

abweichung

𝐹2-

Durchschnitt

𝐹2-

Standard-

abweichung

32 1 0,370 0,130 0,352 0,144

64 2 0,356 0,169 0,302 0,153

128 3 0,386 0,149 0,324 0,125

256 6 0,420 0,142 0,366 0,136

512 12 0,455 0,097 0,410 0,113

1024 25 0,505 0,053 0,459 0,063

2048 {49, 50} 0,565 0,086 0,526 0,088

4096 {99, 100} 0,652 0,099 0,630 0,103

{4485, 4486} {108, 109} 0,631 0,078 0,615 0,091

Tabelle A.15.: Ergebnisse auf WARC von Experiment 5 (Feinanpassungsansatz mit intra-cross-projekt
Datenaufteilung)

63

A. Anhang

A.5. Ergänzende Materialien zu allen Szenarien

100 101

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten (Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0

F1

zero-shot Prompting mit RAG
zero-shot Prompting ohne RAG
Feinanpassung mit cross-projekt DA
few-shot/multi-shot Prompting mit intra-projekt DA
Feinanpassung mit intra-projekt DA
Feinanpassung mit intra-cross-projekt DA

100 101

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten (Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0

F2

zero-shot Prompting mit RAG
zero-shot Prompting ohne RAG
Feinanpassung mit cross-projekt DA
few-shot/multi-shot Prompting mit intra-projekt DA
Feinanpassung mit intra-projekt DA
Feinanpassung mit intra-cross-projekt DA

Abbildung A.3.: Ergebnisse aller Ansätze auf CM1-NASA - Durchschnittliche 𝐹1-Werte mit Standard-

abweichungen bzw. 𝐹1-Werte (oben) und durchschnittliche 𝐹2-Werte mit Standardabweichungen

bzw. 𝐹2-Werte (unten)

64

A.5. Ergänzende Materialien zu allen Szenarien

100 101 102

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten (Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0
F1

zero-shot Prompting mit RAG
zero-shot Prompting ohne RAG
Feinanpassung mit cross-projekt DA
few-shot/multi-shot Prompting mit intra-projekt DA
Feinanpassung mit intra-projekt DA
Feinanpassung mit intra-cross-projekt DA

100 101 102

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten (Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0

F2

zero-shot Prompting mit RAG
zero-shot Prompting ohne RAG
Feinanpassung mit cross-projekt DA
few-shot/multi-shot Prompting mit intra-projekt DA
Feinanpassung mit intra-projekt DA
Feinanpassung mit intra-cross-projekt DA

Abbildung A.4.: Ergebnisse aller Ansätze auf Dronology - Durchschnittliche 𝐹1-Werte mit Standard-

abweichungen bzw. 𝐹1-Werte (oben) und durchschnittliche 𝐹2-Werte mit Standardabweichungen

bzw. 𝐹2-Werte (unten)

65

A. Anhang

100 101

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten (Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0

F1

zero-shot Prompting mit RAG
zero-shot Prompting ohne RAG
Feinanpassung mit cross-projekt DA
few-shot/multi-shot Prompting mit intra-projekt DA
Feinanpassung mit intra-projekt DA
Feinanpassung mit intra-cross-projekt DA

100 101

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten (Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0

F2

zero-shot Prompting mit RAG
zero-shot Prompting ohne RAG
Feinanpassung mit cross-projekt DA
few-shot/multi-shot Prompting mit intra-projekt DA
Feinanpassung mit intra-projekt DA
Feinanpassung mit intra-cross-projekt DA

Abbildung A.5.: Ergebnisse aller Ansätze auf GANNT - Durchschnittliche 𝐹1-Werte mit Standardab-

weichungen bzw. 𝐹1-Werte (oben) und durchschnittliche 𝐹2-Werte mit Standardabweichungen bzw.

𝐹2-Werte (unten)

66

A.5. Ergänzende Materialien zu allen Szenarien

100 101

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten (Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0
F1

zero-shot Prompting mit RAG
zero-shot Prompting ohne RAG
Feinanpassung mit cross-projekt DA
few-shot/multi-shot Prompting mit intra-projekt DA
Feinanpassung mit intra-projekt DA
Feinanpassung mit intra-cross-projekt DA

100 101

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten (Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0

F2

zero-shot Prompting mit RAG
zero-shot Prompting ohne RAG
Feinanpassung mit cross-projekt DA
few-shot/multi-shot Prompting mit intra-projekt DA
Feinanpassung mit intra-projekt DA
Feinanpassung mit intra-cross-projekt DA

Abbildung A.6.: Ergebnisse aller Ansätze auf Modis - Durchschnittliche 𝐹1-Werte mit Standardab-

weichungen bzw. 𝐹1-Werte (oben) und durchschnittliche 𝐹2-Werte mit Standardabweichungen bzw.

𝐹2-Werte (unten)

67

A. Anhang

100 101 102

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten (Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0

F1

zero-shot Prompting mit RAG
zero-shot Prompting ohne RAG
Feinanpassung mit cross-projekt DA
few-shot/multi-shot Prompting mit intra-projekt DA
Feinanpassung mit intra-projekt DA
Feinanpassung mit intra-cross-projekt DA

100 101 102

TL-Anzahl in den projekt-internen
Trainings-/Beispieldaten (Logarithmische Skala)

0.0

0.2

0.4

0.6

0.8

1.0

F2

zero-shot Prompting mit RAG
zero-shot Prompting ohne RAG
Feinanpassung mit cross-projekt DA
few-shot/multi-shot Prompting mit intra-projekt DA
Feinanpassung mit intra-projekt DA
Feinanpassung mit intra-cross-projekt DA

Abbildung A.7.: Ergebnisse aller Ansätze auf WARC - Durchschnittliche 𝐹1-Werte mit Standardab-

weichungen bzw. 𝐹1-Werte (oben) und durchschnittliche 𝐹2-Werte mit Standardabweichungen bzw.

𝐹2-Werte (unten)

68

	Zusammenfassung
	Einleitung
	Grundlagen
	Nachverfolgbarkeit
	Nachverfolgbarkeitsverbindungen
	Wiederherstellung von Nachverfolgbarkeitsverbindungen

	Vortrainierte Sprachmodelle
	Modellarten
	Verwendungsarten

	Experimentelle Grundlagen
	Datenaufteilungsstrategien
	Evaluationsmetriken

	Verwandte Arbeiten
	Wiederherstellung von Nachverfolgbarkeitsverbindungen
	Information Retrieval
	Klassisches maschinelles Lernen
	Feinanpassung
	Prompting
	Vergleich von Feinanpassung und Prompting

	Vergleich von Feinanpassung und Prompting
	Zusammenfassung

	Analyse und Implementierung der TLR-Ansätze
	Analyse
	Feinanpassung
	Prompting

	Implementierung
	Feinanpassungsansatz: BertForSequenceClassification
	Prompting-Ansatz 1: zero-shot mit Retrieval-Augmented Generation
	Prompting-Ansatz 2: zero-shot ohne Retrieval-Augmented Generation
	Prompting-Ansatz 3: few-shot/multi-shot

	Szenarienbasierte Experimente und Auswertung
	Experimentelle Rahmenbedingungen
	Datensätze
	Hyperparameteroptimierung

	Szenario 1: TL-Generierung
	Experiment 1: zero-shot Prompting ohne Retrieval-Augmented Generation (Prompting-Ansatz 2)
	Auswertung

	Szenario 2: TL-Generierung mit optionalem Wissenstransfer
	Experiment 2: Feinanpassungsansatz mit cross-projekt Datenaufteilung
	Auswertung

	Szenario 3: TL-Vervollständigung
	Experiment 3: Feinanpassungsansatz mit intra-projekt Datenaufteilung
	Experiment 4: few-shot/multi-shot Prompting (Prompting-Ansatz 3) mit intra-projekt Datenaufteilung
	Auswertung

	Szenario 4: TL-Vervollständigung mit optionalem Wissenstransfer
	Experiment 5: Feinanpassungsansatz mit intra-cross-projekt Datenaufteilung
	Auswertung

	Einschränkungen und Ausblick
	Bedrohungen der Validität
	Interne Validität
	Externe Validität
	Konstruktvalidität

	Limitierungen und zukünftige Arbeiten

	Fazit
	Literatur
	Anhang
	Ergänzende Materialien zu den Datensätzen
	Ergänzende Materialien zu Experiment 3
	Ergänzende Materialien zu Experiment 4
	Ergänzende Materialien zu Experiment 5
	Ergänzende Materialien zu allen Szenarien

