
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Retrieval-Augmented Large Language
Models for Traceability Link Recovery

Master’s Thesis of

Niklas Ewald

At the KIT Department of Informatics

KASTEL – Institute of Information Security and Dependability

First examiner: Prof. Dr.-Ing. Anne Koziolek

Second examiner: Prof. Dr. Ralf H. Reussner

First advisor: M.Sc. Dominik Fuchß

Second advisor: Dr.-Ing. Tobias Hey

08. January 2024 – 08. July 2024

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself. I

have not used any other than the aids that I have mentioned. I have marked all parts of the

thesis that I have included from referenced literature, either in their original wording or

paraphrasing their contents. I have followed the by-laws to implement scientific integrity

at KIT.

Karlsruhe, 08. July 2024

. .

(Niklas Ewald)

Abstract

During the development of software many kinds of artifacts are created. Traceability

information between them is important for development tasks, such as compliance with re-

quirements, change impact analysis, and finding documentation inconsistencies. Manually

establishing trace links is error-prone and costly. One challenge is the different abstraction

levels artifacts can have. This thesis uses retrieval-augmented large language models

to bridge this semantic gap and evaluates this approach on three different traceability

link recovery tasks. Cost and processing time are kept low by only using the language

model to classify artifact pairs containing similar artifacts. For requirement to source code

traceability link recovery, the approach achieves results comparable to state-of-the-art

approaches with F1 scores of 0.388 on SMOS, 0.478 on eTour, and 0.313 on iTrust. The

approach does not reach the state-of-the-art for the software architecture documentation

to software architecture model and software architecture documentation to source code

tasks.

i

Zusammenfassung

Während der Entwicklung von Software werden viele Artefakte erstellt. Rückvervolg-

barkeitsinformation zwischen ihnen sind wichtig für Aufgaben wie die Einhaltung von

Anforderungen, Auswirkungsanalysen von Änderungen und das Auffinden von Dokumen-

tationsinkonsistenzen. Das manuelle Erstellen von Rückverfolgbarkeitsverbindungen ist

fehleranfällig und kostspielig. Eine Herausforderung besteht in den unterschiedlichen Ab-

straktionsebenen von Artefakten. Diese Arbeit verwendet Retrieval-Augmented Large Lan-

guage Models, um diese semantische Lücke zu überbrücken, und bewertet diesen Ansatz

in drei verschiedenen Aufgaben zur Wiederherstellung von Rückverfolgbarkeitsverbin-

dungen. Kosten und Verarbeitungszeit werden niedrig gehalten, indem das Sprachmodell

nur zur Klassifizierung von Artefaktpaaren verwendet wird, die Artefakte enthalten, die

ähnlich zueinander sind. Für die Wiederherstellung von Rückverfolgbarkeitsverbindungen

zwischen Anforderungen und Quellcode erzielt der Ansatz vergleichbare Ergebnisse zu

dem Stand der Technik mit F1-Werten von 0.388 auf SMOS, 0.478 auf eTour und 0.313 auf

iTrust. Für die Aufgaben der Rückverfolgbarkeitsverbindungen von Softwarearchitekturdo-

kumentation zu Softwarearchitekturmodellen und von Softwarearchitekturdokumentation

zu Quellcode erreicht der Ansatz nicht den Stand der Technik.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1

2 Fundamentals 3
2.1 Traceability Link Recovery . 3

2.2 Large Language Model . 3

2.2.1 Embeddings . 4

2.2.2 Prompting . 5

3 Datasets 7
3.1 Use Cases and Source Code . 7

3.2 Software Architecture Documentation, Software Architecture Models and

Source Code . 8

4 Approach 11
4.1 Preprocessing . 11

4.2 Candidate Retrieval . 14

4.3 Traceability Link Recovery . 15

4.4 Traceability Link Recovery Tasks . 15

4.4.1 Requirements to Source Code . 15

4.4.2 Software Architecture Documentation to Software Architecture

Model . 16

4.4.3 Software Architecture Documentation to Source Code 16

5 Framework 17
5.1 Data Classes . 17

5.2 Artifact Provider . 19

5.3 Preprocessor . 19

5.4 Embedding Creator . 22

5.5 Element Store . 22

5.6 Classifier . 23

5.7 Result Aggregator . 24

5.8 Controller . 24

v

Contents

6 Related Works 27
6.1 Traceability Link Recovery . 27

6.2 Related Problems . 30

6.3 Retrieval Augmented Generation . 30

7 Evaluation 33
7.1 GQM Plan . 33

7.2 Baselines . 34

7.3 General Prompts . 35

7.4 Requirement to Source Code Traceability Link Recovery 36

7.5 Software Architecture Documentation to Software Architecture Model

Traceability Link Recovery . 39

7.6 Software Architecture Documentation to Source Code Traceability Link

Recovery . 47

7.7 Element Similarity . 48

7.8 Cost . 53

7.9 Threads to Validity . 53

8 Conclusion and Future Works 55

Bibliography 57

vi

List of Figures

1.1 Example of a use case and related classes. 2

2.1 Visualization of word2vec embeddings using TensorFlow’s projector tool

[7]. 4

4.1 The preprocessing step. Each artifact is transformed into one or more

elements. For each element an embedding is generated. 12

4.2 Example of possible preprocessing steps shared by different artifact types. 13

4.3 The process for retrieving target candidates and for recovering trace links. 14

5.1 Structure of the Pipeline. 17

5.2 The coarse structure of the framework. Implementations of pipeline mod-

ules are not shown. 18

5.3 Data classes Knowledge and Element. 18

5.4 An example fo how a tree of preprocessed elements might look like. . . . 18

5.5 Example of a source code class artifact split into methods and then into

single lines of code. 20

5.6 Excerpt of the software architecture model from the MediaStore dataset

and a resulting Element. 21

5.7 Examples of how the classifier can return its results. Left: the output is a

subset of the input. Right: the output is a subset of the parent elements of

the input. 23

7.1 [SAD-Code-TLR] Similarity Distance of the n Most Similar Elements For

MediaStore Sentence 20, Sorted By Distance 49

7.2 [SAD-Code-TLR] Similarity Distance of the n Most Similar Elements For

MediaStore Sentence 9, Sorted By Distance 49

7.3 [SAD-Code-TLR] Similarity Distance of the n Most Similar Elements For

TeaStore Sentence 1, Sorted By Distance 50

7.4 [SAD-Code-TLR] Similarity Distance of the n Most Similar Elements For

TeaStore Sentence 23, Sorted By Distance 51

7.5 [SAD-Code-TLR] Similarity Distance of the n Most Similar Elements For

TeaStore Sentence 7, Sorted By Distance 51

7.6 [SAD-SAM-TLR] Similarity Distance of the n Most Similar Elements For

JabRef Sentence 7, Sorted By Distance . 52

vii

List of Tables

3.1 Overview of the used datasets for use case to source code TLR. 7

3.2 Information About the Artifacts and the Gold Standards Contained Within

the Datasets Used for Use Case to Source Code TLR. 8

3.3 Number of Artifacts for Each Project Used in Tasks Involving Software

Architecture Documentation. 8

3.4 Number of Trace Links in the Gold Standard and Coverage Used in Task

Involving Software Architecture Documentation. 8

7.1 Results for Requirement-to-Code Traceability Link Recovery Using the 20

Most Similar Elements for Each Source Element 37

7.2 Comparison Between Original and Slightly Altered Prompt. 38

7.3 [SAD-SAM] Results for Software Architecture Documentation to Software

Architecture Model Traceability Link Recovery using the 5 Most Similar

Elements for Each Source Element. 40

7.4 [SAM-SAD-TLR] Results for Software Architecture Model to Software

Architecture Documentation Traceability Link Recovery using the 5 Most

Similar Elements for Each Source Element. 45

7.5 [SAM-SAD-TLR] Results for Software Architecture Model to Software

Architecture Documentation Traceability Link Recovery using the 10 Most

Similar Elements for Each Source Element. 46

7.6 [SAD-Code-TLR] Results for Software Architecture Documentation to

Code Traceability Link Recovery using the 40 Most Similar Elements for

Each Source Element. 47

7.7 Actual Cost of Using the Approach on eTour for the 20 Most Similar

Elements and approximate Cost if All Elements Would Have Been Compared 53

ix

1 Introduction

There are several artifacts created during the development of a software project. Among

others, artifacts include requirements, design documents, source code, and test cases.

Usually, one artifact is the refinement of another artifact on a different level of abstraction.

Understanding the relationships between artifacts is an important part of developing and

maintaining software. Trace links help with tasks such as change impact analyses and

software reusability analyses [5]. For safety-critical software, traceability might even be

required [31]. Establishing trace links by hand is a costly and error-prone task. Therefore,

trace links often are not documented. Different approaches to automatically recover trace

links have been proposed. They often use information retrieval or machine learning

methods. Methods to automatically recover trace links between artifacts do not reach high

enough precision for acceptable values of recall, and therefore cannot be used in practice.

As different kinds of artifacts use different levels of abstraction to describe the same

information, there exists a semantic gap. It has been shown that large language models

can achieve good results in several tasks like translation, summarizing text, and some

logic tasks. They have shown to possess reasoning abilities and an understanding of

language, which might help in bridging the semantic gap. There is some research applying

large language models to trace link recovery: Lin et al. created Trace BERT, showing

promising results for commit-to-code traceability link recovery [24]. Rodriguez et al. show

their iterative approach for creating a prompt suitable for trace link recovery [36]. Large

language models are typically pre-trained on large amounts of data. Even though, it is

reasonable to assume any particular software project is not contained within the training

data. Context about the project has to be included when using the language model. Large

language models have a maximum amount of tokens for their input, and it is unreasonable

to use all artifacts in a single prompt. Also, a single artifact often only relates to a small

subset of other artifacts. Therefore, the amount of non-related artifact pairs is quite high.

This thesis continues the trend to leverage large language models, but in the form of

retrieval-augmented large languagemodels. Instead of comparing all possible combinations

of source and target artifacts, only a subset of those pairs is processed by the language

model. Target artifacts are stored in a way in which it is possible to quickly find the

most similar ones to a query artifact. Figure 1.1 shows an example containing a use case

involving three steps and two classes containing methods related to the use case. Even

though the classes are not written in natural language it is obvious that they are related to

the use case. A third class WaitingRoom on the other hand is not related. Using the large

language model to classify only a subset of all possible pairs of query and target artifacts

might lead to lower costs and less time spent processing artifacts. The approach tries to

be as generic as possible. This means it is designed in a way where it is not specific to the

1

1 Introduction

Use Case: Schedule Appointment

The patient schedules an
appointment with a doctor.

Flow of events:

1. The patient searches for a
doctor

2. The patient checks the
availability of the chosen doctor

3. The patient schedules an
appointment with the chosen
doctor

class DoctorDatabase {
 searchDoctors()
}

class AppointmentManager {
 checkAvailability(
 Doctor d)
 scheduleAppointment(
 Doctor d, Date date)
}

class WaitingRoomManager {
 getPatients()
}

Figure 1.1: Example of a use case and related classes.

type of artifact that is under consideration. At the same time, it is easy to extend to allow

such functionality if desired. The thesis shall answer how well the retrieval-augmented

large language model approach performs and whether using a large language model has

any benefit over an embedding based information retrieval approach. Another aspect to

explore is, whether this approach is works for all types of artifacts or if it performs worse

for some than for others.

The thesis is structured in the following way: In Chapter 2 the fundamentals needed

to understand this thesis are explained. After, in Chapter 3 datasets commonly used in

traceability research are presented. Chapter 4 discusses the idea of the retrieval-augmented

large language model traceability link recovery approach, while Chapter 5 presents how it

is implemented. Following, other approaches to the same and related problems are shown

in Chapter 6. Then the evaluation of this work follows in Chapter 7. This thesis concludes

with a summary and an outlook to future work in Chapter 8.

2

2 Fundamentals

This chapter will provide an overview of relevant topics that are required to understand

this thesis proposal. It is split into two main parts. section 2.1 will contain the information

needed to understand the problem we are trying to solve and section 2.2 discusses the

foundations of the tools we plan to use.

2.1 Traceability Link Recovery

During the software development process, several documents are created. These docu-

ments, for example, requirements, software architecture descriptions and models, source

code, and test cases, are called artifacts. Between two artifacts, there can be a trace link.

Gotel et al. define trace links as "a specified association between a pair of artifacts, one

comprising the source artifact and one comprising the target artifact." [5]. Where the

source artifact is from where the trace originates and the target artifact is the trace link

leads. The target artifact, for example, might "implement", "test", or "refine" the source

artifact [5].

Another characteristic of trace links is the granularity which is decided by the granular-

ity of the source and target artifacts. For example, a trace link between a sentence of a

requirement and a method from a source code document has a finer granularity than a

whole requirement and a whole class [10].

Traceability can be established manually by a person. It can be established automatically,

where deciding between which artifacts to create trace links is automated. The process

can also be semi-automated, where an automated tool may suggest trace links that have

to be verified by a human [5].

Gotel et al. differentiate between trace capture and trace recovery. Trace capture refers to

when the trace link is created at the same time as the artifacts to which it relates. Trace

recovery describes the approach when the creation of the trace link happens after the

creation of the artifacts it relates to [5].

2.2 Large Language Model

Large Language Models are a machine-learning approach that trains on large amounts

of data. They are statistical language models that are used to generate text, for machine

translation, question answering, summarization, and other natural language tasks [20].The

3

2 Fundamentals

Figure 2.1: Visualization of word2vec embeddings using TensorFlow’s projector tool [7].

input of a large language model usually is tokenized into tokens which are then processed

by the model. A token represents a common sequence of characters, often a word or a

part of a word. For example, the tokenizer of the model GPT-4 splits the sentence "The

patient checks the availability of the chosen doctor." into "The", " patient", " checks", " the",

" availability", " of", " the", " chosen", " doctor", "." [43]. The first "The" in the sentence is

mapped to a different token than the following two "the". Large language models that are

offered as a service often have costs calculated depending on the number of tokens used

[33] [28].

2.2.1 Embeddings

An embedding is a vector representation of some kind of information without losing its

original meaning [37]. Artificial Intelligencemodels, like large languagemodels, are used to

create them [38]. There are several kinds of embeddings to create, such as words, sentences,

or whole documents. For example for word embeddings, embeddings of words with a

similar meaning such as "fruits" and "vegetables" might be close to each other. Word2vec is

a frequently used embedding model used to generate word embeddings. Figure 2.1 shows

4

2.2 Large Language Model

a three-dimensional representation of several word embeddings generated with it. The

highlighted words are the nearest words in the original high-dimensional vector space.

Given a collection of embeddings that are stored in a vector database, to find relevant data

we need some kind of query. An embedding is calculated for this query and the database is

queried for similar embeddings. The are different similarity measures that can be used [38].

For cosine similarity, the cosine of the angle between two vectors is measured which leads

to a result between -1 and 1. The Euclidean distance measures the length of a line between

them. 0 means the same vector and higher values represent more different vectors.

2.2.2 Prompting

When transformer-based large language models were first introduced, the main way to

adapt them to downstream tasks was fine-tuning. A language model was trained on a

smaller dataset created specifically for the chosen task.

In recent years prompting became a popular method to solve tasks [40] [25]. The user

provides a template describing the task in natural language. "Does this text contain

information about [topic]? [text]" is a simple prompt that could be used in a classification

task. The quality of results can vary quite a lot based on the choice of words and type

of prompt. To increase the likelihood of generating better results one can use several

techniques, some of which will be presented here.

Zero-shot prompting

With zero-shot prompting the prompt just describes the task itself.

Example: "Add 3 and 4: "

Few-shot prompting

A few-shot prompt includes examples of how to answer the questions.

Example (2-shot):

"Add 3 and 4: 7

Add 1 and 3: 4

Add 5 and 3: "

Chain-of-Thought prompting [44]

The language model is prompted to add reasoning to its prediction. This can happen in the

form of 1-shot prompting where the example answer contains reasoning or in the form of

zero-shot prompting by adding text along the lines of "let’s think step by step." [19] to the

prompt.

Prompt Chaining [45]

The idea of chaining is to break down the task into smaller but well-scoped sub-tasks.

Sub-tasks can be completed by independent language model calls. Answers will be used

in another prompt.

5

3 Datasets

To evaluate how well the approach works a number of publicly available datasets is

used. First, the datasets used in the use case to source code traceability are presented in

section 3.1. section 3.2 covers the datasets containing software architecture documentation,

architecture models and source code.

3.1 Use Cases and Source Code

For the use case to source code traceability task, Table 3.1 shows some general information

about the used datasets. SMOS, eTour and iTrust are commonly used to compare the

effectiveness of different traceability link recovery approaches [30, 10]. They are part

of a dataset collection of the Center of Excellence for Software & Systems Traceability

(CoEST)[2]. The chosen datasets cover different domains. The gold standards map use cases

to source code. All three datasets contain java source files. ITrust additionally contains

Jakarta Server Page files. Since some preprocessing steps target Java files specifically only

part of the iTrust dataset containing java files is used. For a similar reason, a translated

version of the eTour dataset is used. The original version contains syntax errors which

make it difficult to extract features like class signatures, method signatures, and method

bodies. For the English version the Italian identifiers in the source code and the Italian use

case names were translated into English[11]. In the process the syntax errors within the

source files were fixed. The SMOS dataset used contains Italian use case description and

comments within the source code, but identifiers are English. Since the language models

used have multilingual capabilities, there was no need to use a translated version.

Section 3.1 contains information about the size of the datasets and about the gold standards.

The coverage shows what proportion of the artifacts is mentioned at least once in the gold

standards. A low coverage might hint to incomplete gold standards. For the used datasets,

iTrust has the lowest coverage of target artifacts with just 38.5 %.

Project Domain Language Programming Language

SMOS Education IT/EN Java

eTour Tourism EN Java

iTrust Healthcare EN Java

Table 3.1: Overview of the used datasets for use case to source code TLR.

7

3 Datasets

Project Source Artifacts Target Artifacts Links Source Cov. Target Cov.

SMOS 67 100 1044 1.000 0.680

eTour 58 116 308 0.983 0.767

iTrust 131 226 286 0.802 0.385

Table 3.2: Information About the Artifacts and the Gold Standards Contained Within the

Datasets Used for Use Case to Source Code TLR.

Project SAD Sentences SAM Elements Code Files

BigBlueButton 85 24 547

JabRef 13 6 1987

MediaStore 37 23 97

TEAMMATES 198 16 834

TeaStore 43 19 205

Table 3.3: Number of Artifacts for Each Project Used in Tasks Involving Software Archi-

tecture Documentation.

3.2 Software Architecture Documentation, Software
Architecture Models and Source Code

For traceability link recovery task concerning software architecture documentation, archi-

tecture models, and code five datasets are used, that were originally provided by Fuchß

et al. [8] and later extended by Keim et al. [17] to include source code. They cover open

source projects from several domains.

• BigBlueButton is a web conference system.

• JabRef is a tool to manage citations.

SAD-SAM SAD-Code

Project Links SAD Cov. SAM Cov. Links SAD Cov. Code Cov.

BigBlueButton 52 0.482 0.458 1295 0.459 0.446

JabRef 18 0.769 0.833 8240 0.769 0.980

MediaStore 29 0.757 0.435 50 0.676 0.155

TEAMMATES 51 0.202 0.5 7610 0.439 0.993

TeaStore 27 0.535 0.316 707 0.535 0.707

Table 3.4: Number of Trace Links in theGold Standard andCoverage Used in Task Involving

Software Architecture Documentation.

8

3.2 Software Architecture Documentation, Software Architecture Models and Source Code

• MediaStore is a model application modeled after the iTunes store.

• TEAMMATES is an application to manage feedback in education.

• TeaStore is a microservice reference application emulating an online store.

Each dataset includes software architecture documentation in natural language and soft-

ware architecture models as an XML containing a UML model. For some projects multiple

documentation files and models are included. In this case architecture documentation

and architecture models from the same year are used. All datasets contain documentation

written in English and use English identifiers in the source code. The datasets also contain

gold standards mapping sentences of architecture documentation to an architecture model

element and gold standards mapping the same sentences to source code files. Sometimes,

a sentence is mapped to a folder or package in which case all contained source files are

considered to have a link.

Table 3.3 lists the number of artifacts for each project while Table 3.4 contains the number

of trace links and the coverage they achieve.

9

4 Approach

In this chapter the approach to recover traceability links using retrieval-augmented large

language models is presented. The approach relies on large language models to find trace-

ability links between software artifacts. Due to the nature of the traceability link recovery

task, it is not always feasible to compare every possible artifact combination. Usually, an

artifact is only related to a relatively small number of other artifacts. This number is depen-

dent on the specific project and the established practices for the project. Instead of having

the language model compare all possible source and target artifact combinations, only the

query artifacts and potential target artifacts are compared. For this information retrieval

techniques are combined with the large language model. Retrieval augmented generation

is a method to use external knowledge without relying on the implicit knowledge stored

in the parameters of a language model. If there is new information, the model does not

have to be retrained and instead a relevant document can be included as context when

prompting the language model. The retrieval of relevant artifacts can be seen as a filtering

step. In general, there are two main methods to use retrieval-augmented generation.

The first approach usually lets the language model decide if and how retrieval should be

used. For example, a search engine that searches on Wikipedia could be used in case the

language model does not have enough information to answer a question. This approach

requires multiple calls to the language model and therefore is slower and more expensive.

The advantages, however, are the language model decides if the external information is

necessary, and it can write its own query for additional information. As neither the source

nor the target artifacts are assumed to be an explicitly trained part of the language model,

additional context in the form of potential target artifacts is always needed and the main

benefit of the advanced approach is lost. Therefore, the more simple approach is used.

The approach can be separated into three steps, that will be explained in the following

sections.

4.1 Preprocessing

Gotel et al. [9] define a trace artifact as "A traceable unit of data (e.g., a single requirement,

a cluster of requirements, a UML class, a UML class operation, a Java class or even a

person). A trace artifact is one of the trace elements and is qualified as either soruce or

as a target artifact when it participates in a trace. The size of the traceable unit of data

defines the granularity of the related trace." In this thesis, the term artifact generally is

used to refer to unprocessed pieces of data between which a trace link may or may not

11

4 Approach

Preprocessing

1..nCodelike
Artifacts

Natural Language
Artifacts

Image
Artifacts

Artifacts

...

Source Code

Tests

Requirements

Software Architecture
Documentation

Diagrams

Embedding Creator

Element Store

1..n

1..n

Figure 4.1: The preprocessing step. Each artifact is transformed into one or more elements.

For each element an embedding is generated.

be classified, such as the files contained within a project or dataset. The term element is
used to refer to an artifact or a part of an artifact that has been transformed in some way

to be used with the retrieval augmented large language model traceability link recovery

approach. One or multiple elements represent a transformed, or preprocessed artifact.

The first step of the retrieval-augmented large language model traceability link recovery

approach, is show in Figure 4.1. Artifacts are transformed into elements, and for each

element an embedding is calculated.

The way in which an element is created depends on the type of the artifact. The simplest

method is to not do anything at all. Most textual artifacts can be kept as is. The text

contained within the artifact will be the text used in the element. This way all information

contained within the artifact can be used by the language model at the same time. In some

cases the resulting input will be too large for the used language model, in which case the

input needs to be shortened. Another preprocessing method, used for textual artifacts, is

to split them into smaller pieces. Depending on the type of the artifact, different ways to

split it into elements can be used. Natural language text, commonly used in requirements

or software architecture documentation, can be split into sentences. Artifacts containing

source code, can be split into methods. In addition to the method signature and body, the

lines between methods can be included in order to not lose surrounding context. This

includes comments such as method documentation, but can also be class variables. Textual

artifacts can also be split into chunks of a specified maximum size. When used with large

language models, this chunk size is usually defined in tokens and the result, therefore, is

dependent on the tokenization method used for a language model.

For each element, an embedding is calculated. To have comparable embeddings between

different elements the embedding model is fixed for each run. It does not differ between

source and target artifacts. The embedding and the associated element are stored for later

retrieval.

12

4.1 Preprocessing

Split into words

All Types

Text

Code
Extract Methods

Source
Code

Test
Cases

Natural
Language

Split into
sentences Requirement

Architecture
Documentation

Figure 4.2: Example of possible preprocessing steps shared by different artifact types.

13

4 Approach

Source Artifact 1..n Query ArtifactsPreprocessing Embedding Model k

Database

Target
Elements

(Candidates)

Add Context Result Aggregator

Prompt Generator
and

Large Language
Model

Trace Links

Retrieval

Find similar elements

Figure 4.3: The process for retrieving target candidates and for recovering trace links.

4.2 Candidate Retrieval

The second step is the retrieval step. During this step candidate elements are retrieved.

Candidate elements are the most similar target elements to a source element. The source

element and the target elements are the elements, that will be processed by the language

model. As figure Figure 4.3 shows, only one source element is considered at once. The

source element is used as a query to find target elements that are similar. Originally,

elements were supposed to be stored in a vector store to leverage fast retrieval of elements.

However, fast comparisons and retrieval are often achieved through approximate algo-

rithms. To improve reproducibility, the source elements are compared to all target elements.

This might lead to slow retrieval with very large projects or preprocessing steps which

generate a large number of elements. For the datasets used in this thesis comparing the

embeddings of every source element to the embedding of each target element is acceptable

since speed is not a main concern.

14

4.3 Traceability Link Recovery

4.3 Traceability Link Recovery

The final step is the classification step. A large language model is prompted to decide

whether a source element and a target element are related. For this prompt templates are

used in which the elements are filled.

Just like with the embedding model, this approach is not designed with a specific large

language model in mind. However, to keep the amount of configurations manageable

only OpenAI’s GPT-3.5-turbo model, specifically gpt-3.5-turbo-0125 [29], was used. GPT-

4-turbo was considered. In a small scale test on a subset of the used datasets, it performed

slightly worse than GPT-3.5-turbo. Regarding the higher costs compared to GPT-3.5-turbo,

only the latter is used in experiments.

There is an optional context fetching phase before prompting the language model. This

can include fetching additional information about the project, such as a description. For

elements created by splitting artifacts, it can also be elements which surrounded the source

or target element in the artifact.

4.4 Traceability Link Recovery Tasks

Traceability link recovery is the task to find pairs of artifacts created during a development

process that belong together. They can have relationships such as refinements, implemen-

tations, verifications or represent a different point of view to each other. One challenge of

traceability link recovery is different levels of abstraction between artifacts, which does

not just manifest in different words used for the same things, but also in different forms an

artifact can appear in. While the approach discussed in this thesis is not limited to specific

traceability link recovery tasks, only the following artifact types are discussed.

4.4.1 Requirements to Source Code

A task commonly studied is the recovery of trace links between requirements and source

code. It involves mapping a high-level requirement, often written in natural language,

to low-level source code, written in a programming language. Requirements describe "A

condition or capability that must be met or possessed by a system or system component

to satisfy a contract, standard, specification, or other formally imposed documents" [13].

A common way to express requirements is through natural language [46]. There is no

fixed form a requirement has to be in. One possible form used are use cases, that describe

a scenario of how the software system is to be used. But simple descriptions of how a

system shall behave exist as well. In contrast to requirements, source code is not written

in natural language but a programming language. This results in a semantic gap between

those artifact types. Additionally, a single requirement might be implemented in different

parts of the source code. In a Java project for example, multiple classes might be related to

a requirement.

15

4 Approach

4.4.2 Software Architecture Documentation to Software Architecture Model

The task of software architecture documentation to software architecturemodel traceability

link recovery, involves finding trace links between different documents outlining the

architecture of a software project. Software architecture documentation describes the

system’s architecture in natural language. It provides an overview of components and their

interactions. Software architecture models on the other hand, are a formal representation

of the system’s architecture using a modeling language such as UML. An architecture

model often only contains basic information about software components, such as names

and realized interfaces and what other components they interact with. Compared to other

artifact types, such as source code, the amount of immediately available information is

low.

4.4.3 Software Architecture Documentation to Source Code

Like the requirements to source code traceability link recovery, the software architecture to

source code traceability link recovery task involves finding trace links between high-level

natural language text and low-level source code. The challenge of this task is bridging the

gap between the high-level design descriptions and the source code containing the actual

low-level implementation.

16

5 Framework

This chapter will explain the framework created for this thesis. It will show which concepts

presented in Chapter 4 are supported and how they are implemented.

Target Artifact
Provider Target Preprocessor

Source Artifact
Provider Source Preprocessor

Embedding Creator

Target Element Store

Source Element Store

Classifier Result Aggregator

Figure 5.1: Structure of the Pipeline.

The framework uses a fixed pipeline design. Each step has a fixed function which is

realized using different modules that follow the interface of the step. The general structure

of the pipeline is illustrated in Figure 5.1. For any given module, the step to the previous

needs to be concluded, while some steps are independent of each other.

A controller manages the data transfer between different modules. Figure 5.2 shows the

controller is connected to all pipeline modules, while the modules themselves are mostly

independent of other modules to increase maintainability and reusability.

5.1 Data Classes

Different modules within the framework use several data classes. The most important ones

are Knowledge and Element. Knowledge represents any kind of information that might be

used to determine the existence of trace links. Element is a subclass of Knowledge. As

the name suggests it represents an Element. As explained in Chapter 4 it is created by

transforming an Artifact. Section 5.3 explains this in more detail. As Figure 5.3 shows, a

Knowledge object possesses a content attribute. In most cases this is some kind of text.

However, it is intended to be extendable to include other kinds of data, such as images

or perhaps sound. Besides the original artifact content or a part of it, as it is mostly used

in Element objects, it could contain a description of the software project. Knowledge also

possesses an identifier and a type attribute. type stores information about what kind of

information is represented. The identifier attribute is a unique text used to identify a

specific piece of information while the program is running.

17

5 Framework

Controller

ArtifactProvider Preprocessor Embedding Creator ElementStore Classifier ResultAggregator

Artifact Element

Knowledge

ContextProvider

ClassificationResult

TraceLink

Figure 5.2: The coarse structure of the framework. Implementations of pipeline modules

are not shown.

Element

parent

granularity

compare

Knowledge

content

identifier

type

Figure 5.3: Data classes Knowledge and Element.

UC01

UC01$1 UC01$2

UC01$1$1 UC01$2$1 UC01$2$2

Figure 5.4: An example fo how a tree of preprocessed elements might look like.

18

5.2 Artifact Provider

In addition to the attributes inherited by Knowledge, Element adds three additional ones.

For a given Element parent points to the Element that was used to create it. The value of

granularity shows how fine the Element is. This allows for pipeline modules to work on

Elements of specific granularity. The granularity of an Element with the content of an

original artifact is 0. A higher granularity value represents a finer granularity. As it is not

supported to work on amore coarse granularity than the original artifacts, the granularity

of an Element is always greater than or equal to 0. Therefore, child elements will be given

a higher granularity. With the attribute compare a Preprocessor decides whether an

Element should be considered when making similarity comparisons and whether they

will be sent to a Classifier. Artifact inherits from Element.It represents the original

inputs, such as the content of files containing source code, requirements, diagrams or

other software artifacts. When creating an Artifact object, compare is set to false. They

are never used for direct comparisons and only exist to be preprocessed or to be used as

context.

5.2 Artifact Provider

The artifact provider module is responsible to load files from the file system and create

artifact objects. In its simplest form an artifact provider reads a text contained within one

or more files and creates an artifact containing the same text. The choice what kind of

artifact provider to use is dependent on how the dataset shaped. There are three artifact

providers implemented for commonly used structures.

• The TextArtifactProvider simply treats each file in a given folder as a single artifact.

• The DeepTextArtifactProvider searches for files with specified extensions within

subfolders of a given folder and treats them the same way the TextArtifactProvider

does.

• The SingleFileArtifactProvider treats a single file as a single artifact. A corre-

sponding preprocessor needs to split it into seperate elements.

5.3 Preprocessor

A preprocessor converts an artifact into one or more elements. It also carries out additional

preprocessing actions, such as lemmatization or stop word removal. The main focus for

this thesis lies in splitting artifacts into smaller chunks. The idea is, if embedding models

and the large language model are trained on natural text and existing source code, it might

be a hindrance to change the artifact content into an unnatural form.Different types of

artifacts might need different preprocessors. For example a preprocessor which is meant

to separate natural language text into sentences is not suitable for model descriptions in

xml notation. A preprocessor splitting source code into methods can’t work with natural

text.

19

5 Framework

Artifact

identifier: Calculator.java

granularity: 0

compare: False

content:

public class Calculator {
 public int add(int a, int b) {
 result = a + b;
 return result;
 }

 public int subtract(int a, int b) {
 /* do stuff */
 }
}

Element

identifier: Calculator.java$1

granularity: 1

compare: False

content:

public int add(int a, int b) {
 result = a + b;
 return result;
}

Element

identifier: Calculator.java$2

granularity: 1

compare: False

content:

public int subtract(int a, int b) {
 /* do stuff */
}

Element

identifier: Calculator.java$1$1

granularity: 2

compare: True

content:

result = a + b;

Element

identifier: Calculator.java$1$2

granularity: 2

compare: True

content:

return result;

...

Figure 5.5: Example of a source code class artifact split into methods and then into single

lines of code.

Figure 5.5 shows an example of how a Java class might be seperated into elements. First

the Calculator class contained in the artifact Calculator.java is seperated into methods.

Then the methods are split into single lines. The preprocessor can split the artifact into

elements of different granularities. Usually, the granularity of a child element is the

parent’s granularity + 1, which can also be seen in the example. Calculator.java$1

and Calculator.java$2 have a granularity of 1. They are finer than the original artifact.

Additionally, Calculator.java$1$1 and Calculator.java$1$2 have a granularity of 2.

Often it is enough to have two levels of granularities: 0 for the original artifact and 1 used

for the elements it was split into. If there is no preprocessing done, i.e. the content of the

original artifact is used, only one granularity level is used.

As mentioned in Section 5.1, the preprocessor decides whether the compare attribute

should be set. This differentiates an Element that is completely preprocessed and therefore

meant to be part of the retrieval process form an Element that is only returned as possi-

ble context. In the example from Figure 5.5, the preprocessor returns {Calculator.java,

Calculator.java$1}, Calculator.java$2, Calculator.java$1$1, Calculator.java$1$2

and all Elements created from Calculator.java$2. Only the Elements containing a single

code line will be used during the retrieval step. By returning and storing all Elements, it is

ensured modules located at a later point in the pipeline can traverse the Artifact/Element

tree, either as additional context or to aggregate the results correctly.

Each element has a unique identifier. Identifiers of children of the same parent should be

in ascending order when natural sorting. This way later modules can use the surrounding

context of an Element. In the implementation for this thesis, a child is given its parent’s

identifier concatenated with "$k" where k is increasing by 1 for each child of an Element.

The ’$’ symbol was chosen due to being not used in artifact identifiers in any of the used

datasets.

20

5.3 Preprocessor

<packagedElement xmi:type="uml:Interface" xmi:id="_68uVELg2EeSNPorBlo7x9g" name="IDB">
 <ownedOperation xmi:id="_YeL7cL5kEeSjpppo_XMujw" name="getFileList"/>
 <ownedOperation xmi:id="_72wUYLg2EeSNPorBlo7x9g" name="query"/>
</packagedElement>
<packagedElement xmi:type="uml:Interface" xmi:id="_4TPZgHDpEeSqnN80MQ2uGw" name="IUserDB">
 <ownedOperation xmi:id="_7EO6cHDpEeSqnN80MQ2uGw" name="addUser"/>
 <ownedOperation xmi:id="_8ARE4HDpEeSqnN80MQ2uGw" name="getUserData"/>
</packagedElement>
<packagedElement xmi:type="uml:Component" xmi:id="_tBjC0HDpEeSqnN80MQ2uGw" name="UserDBAdapter">
 <interfaceRealization xmi:id="_bD02dx8CEe2st8EPFuwF6A" client="_tBjC0HDpEeSqnN80MQ2uGw" supplier="_4TPZgHDpEeSqnN80MQ2uGw" contract="_4TPZgHDpEeSqnN80MQ2uGw"/>
 <packagedElement xmi:type="uml:Usage" xmi:id="_bD02eB8CEe2st8EPFuwF6A" client="_tBjC0HDpEeSqnN80MQ2uGw" supplier="_68uVELg2EeSNPorBlo7x9g"/>
</packagedElement>

Type: Component,
Name: UserDBAdapter

Interface Realization: IUserDB
Uses: IDB

Figure 5.6: Excerpt of the software architecture model from the MediaStore dataset and a

resulting Element.

The pipeline contains two preprocessor stages. One is used for source artifacts and the

other for target artifacts, as usually they belong to different artifact types and therefore

may require different preprocessing.

Out of the implemented preprocessors the simplest one does not do any preprocessing

to the content of the artifact. It takes the text contained within the artifact and creates

an element with the same content. Since there are preprocessing steps dependent on the

artifact type, this preprocessor is usable for all text based artifacts.

For artifacts containing source code two preprocessors exist. The first one searches for

methods within a Java class and creates a separate element for each of them. Often, the

method signature and method body do not contain all the relevant information. Docu-

mentation, such as Javadoc comments, are usually directly above the method signature.

To include this information the preprocessor also include the lines since the end of the

last method in each element. The second code preprocessor splits the artifact into chunks.

Chunking is a technique often used in conjunctionwith retrieval-augmented large language

models to only fetch relevant parts of a document or to at least reduce the amount of un-

necessary information retrieved. For this langchain’s RecursiveCharacterTextSplitter

is used. This text splitter tries to split on characters of a given list sequentially until all

chunks are smaller than a specified size. As each programming language uses its own syn-

tax the implemented preprocessors are not universally applicable. Only Java is supported,

which is the language used in the datasets, that the approach is evaluated with.

Artifacts containing natural language text, are preprocessed by either splitting the text

into sentences or into lines. Which one is used depends on the structure of the artifacts

and the wanted granularity for the resulting elements.

A preprocessor for generating elements from UML models saved as XML files is im-

plemented. This preprocessor parses the XML file and extracts information about the

individual UML elements, such as type, name and which interfaces are realized by compo-

nents. In addition to its name, the resulting Element objects can be configured to contain

usages, operations and/or interface realizations. Figure 5.6 shows original interfaces and

21

5 Framework

a component from the MediaStore dataset and the information that is extracted from

them.

5.4 Embedding Creator

The embedding creator module calculates an embedding of the content of each element.

Since comparable embeddings, i.e. embeddings in the same vector space, for source and

target elements are needed, only one embedding creator exists in the pipeline. For this

thesis only the OpenAIEmbeddingCreatorwas implemented. It uses langchain’s OpenAIEm-

bedding [3] to calculate an embedding based on the content of an Element. While the

embedding model can be freely chosen from a number of existing models, or even be one

trained from scratch, only OpenAI’s text-embedding-3-large [32] is used in this thesis

to cut down the amount of possible configurations. It caches the calculated embeddings,

so they aren’t recalculated every time the program is run with the same inputs.

5.5 Element Store

The element store module stores and retrieves elements. During creation, the element

store receives all elements from the preprocessor together with their embedding. It is

assumed once the store is created, no new elements will be created and added. Since the

evaluation is done on fixed datasets, this is a reasonable assumption for this thesis but

might impact its reusability in future projects. The pipeline uses two element stores: a

source element store and a target element store. They store source elements and target

elements respectively.

After its creation, the element store processes queries. A query contains the embed-

ding of an Element’s content. The amount of returned elements is dependent on the

implementation. For the current implementation however, it is configurable to a specific

amount and/or a threshold. Originally the element stores were intended to only store

Elements with compare set to True. However, since the underlying database only stores

the identifier for parents of Elements instead of the python object, the element store

needs access to every element. To avoid having multiple places providing the same in-

formation the element store is also responsible for elements which are not part of the

query answer. Therefore, besides querying the element store for similar elements, it also

provides methods to search an element with a specific identifier and for elements whose

parent has a specific identifier.

The framework uses ChromaDB [4] as its vector store implementation. Alternatively,

faiss [6] was considered. Both are commonly used vector store implementations used

in conjungtion with langchain. However, a Python 3.12 compatible version of faiss only

became available during the development. Therefore, ChromaDB was used. Chroma uses

an approximate nearest neighbour algorithm to find entries similar to a given query. As a

22

5.6 Classifier

Classifier

Req01$5,
[Code01$2,
Code01$3,
Code05$2,
Code08$1]

Req01$5,
[Code01$2,
Code05$2]

Classifier

Req01$5,
[Code01$2,
Code01$3,
Code05$2,
Code08$1]

Req01,
[Code01,
Code05]

Figure 5.7: Examples of how the classifier can return its results. Left: the output is a subset

of the input. Right: the output is a subset of the parent elements of the input.

result, it is non-deterministic. To remedy this problem and have reproducibility, whenever

chroma is queried with a specific amount of entries n in mind, it is instead queried for

all entries. They are then sorted based on their distance to the query embedding and the

first n elements of the list are returned. This approach is contrary to the speed benefit

of vector stores when compared to conventional databases. For this work it is deemed

an acceptable trade-off. The used datasets at most contain a couple of hundred artifacts

and even when preprocessed into elements, the element store only needs to handle a few

thousand of entries.

5.6 Classifier

The classifier module decides whether a trace link will be classified. For this thesis, only

classifiers using large language models are used, however, other implementations are

possible. Per call, the classifier takes a single source element and a list of target elements.

This results in a source element and a list of target elements, where the Classifer predicts

a traceability link between the source element and all target elements.

Figure 5.7 illustrates how returned elements do not need to be the same as the ones used

to call the classifier. While the classifier implementation in the left example compared

the input elements, the implementation on the right compared the parents of the input

elements and therefore only makes assumptions about the parents. Future implementations

might return a sorted list instead of a binary classification. In this case, it is important

to choose a result aggregator that expects such an input. If needed, a classifier can use

context through a context provider to gain information about the siblings of elements, i.e.

the elements with the same parent.

The classifiers were implemented iteratively. The first classifier is the Yes/No classifier. It is

a classifier which expects either ’yes’ or ’no’ as an answer from the large language model.

Its main purpose is to get to know how a large language model behaves and how the system

works without accidentally spending a lot of money. The second classifier is more open in

the prompts used with it. It is meant to for prompts asking for a reason why the language

model answers in the way it does. The last classifier is capable of performing more than

one prompt per element pair. It uses a list of prompts and termination conditions, that will

be used sequentially. After each prompt the classifier checks whether the language model

reply fulfills the current termination condition. If not it continues with the next prompt.

23

5 Framework

The termination condition can lead either to a predicted trace link or no predicted trace

link.

In some cases, it is important to assess the quality of the retrieved elements without

filtering them further. However, the framework uses a fixed pipeline layout and each

step must be filled with a module. For this the MockClassifierIt does not query the large

language model and instead considers the source element to have a trace link to each

similar target element.

5.7 Result Aggregator

The result aggregator performs two functions. First it aggregates the results of the classifier

to the correct granularity. For example, if the desired granularity of trace links is between

classes and whole requirements, but the classifier returned potential trace links between

methods and sentences, then, the result aggregator will look up parents until the desired

granularity for source and target elements is found. The result aggregator can only traverse

the element tree towards the original artifact. Even if the result aggregator could traverse

it to find finer elements, the resulting trace link predictions would stay as course as the

output of the classifier. The second function is to whether a trace link should be classified.

The implemented result aggregator, AnyResultAggregator, will classify a trace link if any

of the children, or the element itself, is considered to be related. It therefore puts the

responsibility of classifying trace links completely on the Classifier.

5.8 Controller

The controller is responsible to instantiate the pipeline modules and control the flow of data

between them. To use the controller it needs a pipeline configuration. This configuration

is saved in form of a JSON file. The content of a possible configuration file is shown in

Listing 5.1. Each pipeline module has a name. This name specifies which implementation

to use. In addition, each module has a field for arguments. Which arguments are possible

and whether they are optional or not depends on the implementation of the module in

question.

1 {

2 "source_artifact_provider": {

3 "name": "text",

4 "args": {"artifact_type": "requirement", "path": "./datasets/eTour_en/UC"}

5 },

6 "target_artifact_provider": {

7 "name": "text",

8 "args": {"artifact_type": "source code", "path": "./datasets/eTour_en/CC"}

9 },

10 "source_preprocessor": {

11 "name": "sentence",

12 "args": {"language": "en"}

24

5.8 Controller

13 },

14 "target_preprocessor": {

15 "name": "code_chunking",

16 "args": {"language": "java"}

17 },

18 "embedding_creator": {

19 "name": "open_ai",

20 "args": {"path": "./storage/eTour_en/embeddings/", "model": "text-embedding-3-

large"}

21 },

22 "source_store": {

23 "name": "chroma",

24 "args": {"direction": "source", "path": "./storage/eTour_en/"}

25 },

26 "target_store": {

27 "name": "chroma",

28 "args": {"direction": "target", "path": "./storage/eTour_en/", "

similarity_function": "cosine", "n_results": 20}

29 },

30 "classifier": {

31 "name": "chain_of_thought",

32 "args": {"model": "gpt-3.5-turbo-0125"}

33 },

34 "result_aggregator": {

35 "name": "any_connection",

36 "args": {

37 "source_granularity": 0

38 }

39 }

40 }

Listing 5.1: Example pipeline configuration

25

6 Related Works

This chapter gives an overview of related work. In section 6.1 different approaches to

traceability link recovery are presented. section 6.2 covers approaches to related problems,

while in section 6.3 discusses the work using retrieval augmented language models.

6.1 Traceability Link Recovery

To bridge the semantic gap problem between natural language requirements and code,

Hey et al. propose to use fine-grained similarities in the paper "Improving Traceability

Link Recovery Using Fine-grained Requirements-to-Code Relations" [12]. Their approach

Fine-Grained Traceability Link Recovery (FTLR) automatically recovers trace links in an

unsupervised setting. It does not need existing trace links. Instead of whole documents, the

smallest elements FTLR operates on are requirement sentences and source code methods.

The process consists of three steps: representing artifact elements as word embeddings,

calculating similarities between the elements, and aggregating the fine-grained relations.

FTLR defines the relation between a (course-grained) requirement and a (fine-grained)

code element as the most similar relation between a requirement element and a code

element. To create trace link candidates a majority vote is used. Each method votes for the

requirements it is related to after a threshold is applied. Final trace links are retrieved by

applying another threshold. Hey et al. consider additional information contained in the

artifact documents. Different variants of FTLR are created which use method comments,

method call dependencies, and structural information of use cases in the form of use

case templates. The datasets used for evaluation are the eTour, iTrust, SMOS, and eAnci

datasets provided by the CoEST [2]. Hey et al. report precision, recall, the 𝐹1-score, and

mean average precision for the different FTLR variants. The variant incorporating all three

additional information sources achieves the best average 𝐹1-score of 0.327. Using use case

templates had the greatest impact.

Moran et al. present their Hierarchical Probabilistic Model for Software Traceability

(COMET) in their paper "Improving the Effectiveness of Traceability Link Recovery using

Hierarchical Bayesian Networks" [30]. It combines multiple measures of textual similarities

to model relationships between artifacts. The authors name three shortcomings of prior

approaches: only using a single textual similarity metric, no ability to use developer

feedback, and approaches only considering pairs of artifacts. Moran et al. define the

existence of trace links as a probabilistic problem, and they model the traceability link

recovery task as a bayesian inference problem. COMET uses three stages. The first stage

27

6 Related Works

combines a number of different textual similarity metrics. The second stage uses feedback

of developers. And the third stage makes use of transitive traceability links. To decide

whether there is a trace link between two artifacts the posterior probability has to be

calculated. Since it cannot be calculated analytically, different approximations are used:

Maximum a Posteriori estimation, A Markov Chain Monte Carlo technique using the No-

U-Turn sampling, and Variational Inference, a machine learning-based technique. Moran

et al. showed, that only using stage 1 already comes close to optimally configured baseline

combination.

In their paper "Leveraging Intermediate Artifacts to Improve Automated Trace Link Re-

trieval" [35], Rodriguez et al. explore the use of intermediate artifacts to increase accuracy.

For example, to find trace links between requirements and code, trace links between

requirements and design, and trace links between design and code are incorporated. To

find trace links, both, the Vector Space Model (VSM) and the Latent Semantic Indexing

(LSI) approach are included. The authors compare three technique families: direct (e.g.

requirement to code), transitive (e.g. requirement to design, and design to code), and

hybrid approaches, which combine the results of the direct and transitive approaches. For

the transitive approach, there are multiple paths from source to target artifact possible.

Therefore, the individual path scores have to be aggregated using one of three methods:

the maximum score, the sum of all scores, or a weighted sum using principal component

analysis (PCA). Similarly, the hybrid approach needs to aggregate the results of the direct

and transitive approaches. The best hybrid approach achieved better results than the

best direct approach for all five datasets used, for all reported metrics (MAP, AUC, LAG).

However, the best transitive approach did outperform the best hybrid approach on one

dataset for all metrics and on two other datasets for MAP. No single technique performed

best on all datasets. Rodriguez et al. assume an optimal technique needs to be tuned

specifically for a project and maybe for different trace paths within a project.

Besides requirements and code, there are other artifacts to be looked at. In the paper

"Detecting Inconsistencies in Software Architecture Documentation Using Traceability

Link Recovery", Keim et al. focused on software architecture documentation in the form of

natural language texts and formal architecture models [16]. While the main goal is to find

inconsistencies in the documentation, they present their approach ArDoCo, which uses

traceability link recovery to detect inconsistencies. The approach is based on SWATTR

[18], which uses four major steps: model extraction, text extraction, element identification,

and element connection. ArDoCo improves on SWATTR’s handling of compound nouns

by using phrases and adapting the heuristics if possible names of recommended instances

belong to the same phrase. Keim et al. evaluated their approach on a benchmark dataset

[8], containing the three open source projects MediaStore, TeaStore, and TEAMMATES to

which they added JabRef and BigBlueButton. For traceability link recovery their approach

achieves an average 𝐹1-score of 0.81 with a precision of 0.83 and a recall of 0.82.

In "Recovering Trace Links Between Software Documentation and Code", Keim et al.

present their approach TransArC for traceability link recovery between architecture

documentation and code [17]. Their approach generates transitive links using architecture

models as intermediate artifacts by combining ArDoCo [16] for finding trace links between

28

6.1 Traceability Link Recovery

architecture documentation and models, and a new approach ARchitecture-to-COde Trace

Linking (ArCoTL) for finding links between architecture models and code. ArCoTL uses

intermediate representations of the artifacts on a more abstract level. Using heuristics, each

pair of architecture and code items is evaluated, resulting in a confidence value of each

heuristic for each pair. Keim et al. use standalone, independent, heuristics, which compare

package and component names, paths of compilation units and component names, method

names and signature names, and architecture element names and names of compilation

units and datatypes. They also used dependent heuristics, which depend on the results

of other heuristics, such as a common word heuristic which increases the score of the

name comparison heuristic if the difference of the compared names is a common prefix or

suffix like "Test" or "Exception". Aggregators combine the results and filter out unlikely

pairs. After, trace links are generated for the remaining pairs. To find trace links between

architecture documentation and code the results of ArDoCo and ArCoTL are aggregated.

Keim et al. evaluate their approaches on the same projects used to evaluate ArDoCo

[16], for which the dataset [8] contains documentation, structural architecture models. In

addition, gold standards for architecture documentation to code and architecture model to

code were created. For TLR between architecture models and code, the authors report an

average 𝐹1-score of 0.98, which they explain as the result of software architecture models

and code being very closely related with a small semantic gap. They note, that some

naming-related issues, causing false positives and false negatives in some projects, still

exist. For TLR between software documentation and code, an average 𝐹1-score of 0.82 is

reported, significantly outperforming the baselines.

Rodriguez et al. discuss prompt engineering for using large language models for trace-

ability link recovery in their paper "Prompts Matter: Insights and Strategies for Prompt

Engineering in Automated Software Traceability" [36]. They present two approaches:

classification and ranking. They start the classification approach with a simple prompt and

iteratively refine it. To learn why a prompt might lead to mispredictions they prompted

the model to explain its decision. While the authors say whether the explanations are

accurate to the actual reasoning is not part of their paper they mention that it was a useful

tool to improve the prompts. Chain-of-thought reasoning was used to first prompt the

language model for possible reasons why requirement pairs might be related and why

they might be unrelated before asking it to classify based on these reasons.

In their second approach, Rodriguez et al. prompted the language model to rank several

artifacts from most to least related. Since random order for target artifacts resulted in a

barely above-random performance, they decided to present the artifacts in a sorted order

based on similarity to the query artifact, on which the language model improved. The

authors list several key takeaways. Small changes in the prompt can lead to big differences

in the language model output. Even subtle changes such as pluralization can change

outcomes. The performance of a prompt varies between datasets and models, however,

techniques such as chain-of-thought tend to be more consistent.

Another approach toward the traceability link recovery problem includes leveraging a

project’s known trace links to improve results. Since often only a small amount of trace

links is known for projects, Mills et al. incorporate active learning to reduce the needed

training data with their approach ALCATRAL [27]. ALCATRAL first trains a classifier

29

6 Related Works

on a small initial training set. The classifier then labels the unlabeled pairs and assigns a

confidence score. Uncertain classifications are inspected by an expert to provide the true

label, which then is used to update the training set.

6.2 Related Problems

A problem related to traceability link recovery, especially if it involves code artifacts, is

bug localization. Given a textual bug report, the goal is to find the corresponding location

in the source code. In recent years machine learning approaches and large language

models became popular to solve this problem. [23] Liang et al. use a fine-tuned language

model in their paper "Modeling function-level interactions for file-level bug localization" in

their approach FLIM. Large files can cause issues during the training of machine learning

approaches. Additionally, functions within a file might not be related, which might lead to

incorrect results if adjacent information is used. To solve this, Liang et al. split the source

files at the function level. As the base model for their approach, CodeBERT was chosen. It

is first fine-tuned on a code search task. In the second stage, the model captures semantic

features, which then are used by a learning-to-rank model to predict the relevance of

a given code section. Liang et al. compare their approach to three IR-based and three

machine-learning approaches. For five out of six projects, FLIM achieves the best MAP

score, increasing between 6.0% and 10.5% compared to the best baseline approach. As FLIM

project-dependent training data often is not available, the authors conduct an additional

experiment, in which FLIM is fine-tuned on the projects not used for testing. It achieves

an average MAP of 0.402.

In their paper "Improving Bug Localization With Effective Contrastive Learning Represen-

tation" Luo et al. present their approach CoLoc [26]. For their language model, they carry

out two pre-training phases: using masked language model pre-training and contrastive

learning. Then, it is fine-tuned for the bug localization task. To evaluate CoLoc, a dataset

containing bug reports and files of AspectJ, Eclipse UI, JDT, SWT, and Tomcat are used.

CoLoc is compared to several baseline approaches, achieving a higher MAP score on all

projects. In a second experiment, CoLoc is compared to other pre-trained language models:

BERT, RoBERTa, and CodeBERT. The authors note the pre-trained approaches all either

outperform or have close results to the baseline approaches of the first experiment.

6.3 Retrieval Augmented Generation

Inside large language models, knowledge is saved implicitly inside their parameters.

Storing more information therefore requires larger models and updating their knowledge

usually requires retraining. In "Retrieval-Augmented Generation for Knowledge-Intensive

NLP Tasks", Lewis et al. tackle this problem by augmenting a language model with a

vector index of Wikipedia as a non-parametric memory [22]. This memory is accessed

using a neural retriever. The retriever and the generator model are trained jointly. During

30

6.3 Retrieval Augmented Generation

training the encoder model parameters are not changed not to have to recalculate the

vector index. Lewis et al. evaluate their approach using several NLP tasks: Open-domain

Question Answering, Abstractive Question Answering, Jeopardy Question Generation,

and Fact Verification. As a classification task, the fact verification task, FEVER [42] is of

special interest to us. The authors report their approach comes within 4.3% of the baseline

state-of-the-art models.

One hindrance to adopting retrieval-augmented language models is the needed changes to

the model and the pre-training required for incorporating a knowledge retriever. This is

not always feasible and might be impossible in some cases when the pre-trained language

model has to be used with no changes. In "In-Context Retrieval-Augmented Language

Models" Ram et al. present an approach for using off-the-shelf language models which

works by adding a retrieved document to the beginning of the language model input

[34]. During generation, a retriever is called every couple of generated tokens to provide

a retrieved document. Ram et al. report, that calling the retriever often leads to better

results, but also calling it more rarely improves performance compared to a language model

without a retriever. They claim it is "a tradeoff between runtime and performance".

Other work focuses on a single use of the retriever before the language model generates

an answer [14] [21] [15] [39]. Usually, one or more relevant documents are concatenated

to the original query.

31

7 Evaluation

The answer of OpenAI’s large language models are not deterministic. A parameter to set a

seed is now available as a beta feature, but was not when the experiments were performed.

To minimize this problem the temperature of the used language model is set to 0 which

should lead to more consistent outputs according to OpenAI’s API documentation [41].

Each experiment also could have been performed multiple times and the results of each

run averaged. Due to the rapidly increasing cost this was dismissed, and each experiment

is only performed once.

The language model used in all experiments is OpenAI’s GPT-3.5-turbo-0125. GPT-4.0-

turbo was considered, but performed similar to GPT-3.5-turbo on a subset of the used

datasets. Due to this and the increased cost of GPT-4.0-turbo, it was decided to perform

the experiments on GPT-3.5-turbo only.

7.1 GQM Plan

This section discusses the planned evaluation of the proposed approach. It follows the

Goal Question Metric method [1].

The GQM-Plan is the following:

• Goal: Automatically recover traceability links between artifacts of a project.

• Question 1: How well does the retrieval-augmented large language model approach

perform?

• Metric 1: Precision, Recall, F1-scores on benchmark datasets for the retrieval-

augmented large language model approach

• Question 2: Does the large language model improve upon the embedding-based

retrieval method?

• Metric 2: Precision, Recall, F1-scores on benchmark datasets for the retrieval system

with and without the language model

• Question 3: How does the approach compare to state-of-the-art approaches?

• Metric 3: Precision, Recall, F1-scores on benchmark datasets for the retrieval-

augmented large language model approach and state-of-the-art approaches

33

7 Evaluation

To evaluate the approach, Precision, Recall, and the F1 score are used. These metrics

are commonly used in classification tasks. They are also used in prior traceability link

recovery research, and therefore allows a comparison of the retrieval-augmented large

language model approach and state-of-the-art approaches. Precision measures the ratio

of correctly predicted links and all predicted links. Recall measures the ratio of correctly

predicted links and all relevant documents. It shows an approach’s ability to provide

correct trace links. The F1 score is the harmonic mean of precision and recall. The Metrics

are calculated in the following way, where TP is true positives, FP is false positives, and

FN is false negatives.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(7.1)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(7.2)

𝐹1 Score = 2 × Precision × Recall

Precision + Recall

(7.3)

Another commonly used metric in traceability link recovery research is the Mean Average

Precision. It requires for all, according to the gold standard, positive trace links to be in

the results, sorted by how certain the approach is. Since the retrieval-augmented large

language model approach only compares a small part of all possible artifact combinations,

and it does not generate a sorted result set.

7.2 Baselines

To assess the qualityThe first one is the use of only retrieved from the Element Store. For

each source element a number of most similar target elements is returned. For this each

element that is returned by the Element Store is classified having a trace link with the

source element used to query it. The language model is not prompted. This allows to see

what kind of effect the classifier step has or whether a using just the results of the retrieval

step might be beneficial.

Besides this Retrieval-Baseline, the approach is compared to state-of-the-art approaches.

For requirement to source code traceability link recovery those approaches are COMET

[30] and FTLR [10]. For both projects the results presented are as Hey reported them

[10] or recreated using the replication package he provided [11]. COMET is an approach

which model the probability of two artifacts having a trace link. It uses a combination

of several textual similarity metrics. FTLR considers fine-grained trace links. Instead

of comparing artifact to artifact it extracts smaller features from them. It uses word

embeddings to compare requirement and source code artifacts. FTLR has several variants,

it can use method comments, filtering of templates and call dependencies. For the software

34

7.3 General Prompts

architecture documentation to software architecture model traceability link recovery task,

ArDoCo [16] is used as a baseline. ArDoCo is an approach to detect inconsistencies in

software architecture documentation. It makes use or trace link recovery to do so. ArDoCo

uses four major steps: model extraction, text extraction, element identification, and element

connection. The results presented in their paper were achieved using a combination

of normalized Levenshtein distance and Jaro-Winkler as word similarity metric. For

the software architecture documentation to source code traceability link recovery task,

TransArC [17] is used as a baseline. TransArC assumes a transitive feature of trace

links. First ArDoCo is used to find traceability links between architecture documentation

and architecture models. Then, a new approach, ArCoTL, is used to recover traceability

links between architecture models and source code. Finally, found trace links from both

approaches are linked based on whether they share a architecture model component. The

presented result of ArDoCo and TransArC are taken form their respective papers.

7.3 General Prompts

Multiple prompts are used to evaluate the retrieval-augmented large language model

traceability link recovery approach. Two of them will be used for all artifact type pairs.

The goal of this thesis is not to do extensive prompt engineering, as different large language

models react differently to the same prompt and therefore a very good prompt might

perform worse with a future language model. Nevertheless, I believe by basing the used

prompts on prompts found by prior work, especially on the prompts by Rodriguez et

al. [36], the results will be valid. Rodriguez et al. did not pursue a retrieval-augmented

approach and only presented their results for requirement to requirement tracing. However,

since this thesis discusses an approach that tries to be universal when it comes to artifact

types, a generalized prompt is wanted.

Prompt 7.1: Yes/No

Question: Here are two parts of software development artifacts.

{source_type}: ”’{source_content}”’

{target_type}: ”’{target_content}”’

Are they related?

Answer with ’yes’ or ’no’.

Prompt 7.2: Reasoning

Below are two artifacts from the same software system. Is there a traceability link

between 1 and 2? Give your reasoning and then answer with ’yes’ or ’no’ enclosed in

<trace> </trace>.

1 {source_type}: ”’{source_content}”’

2 {target_type}: ”’{target_content}”’

35

7 Evaluation

The No/Yes classifier uses Prompt 7.1, a prompt template based on the initial prompt

Rodriguez et al. used [36]. This prompt is simple enough to get an idea how well the

approach might work and to figure out how the large language model behaves. While the

language model mostly follows the command, it often answers with a variation of "yes" or

"no", such as adding punctuation or using uppercase (e.g. "yes." or "Yes" instead of "yes").

Therefore, when evaluating the reply of the language model, it is only checked whether a

lowercase version of the reply contains "yes". In each prompt template {source_type} and
{target_type} are placeholders that will be filled in with the respective artifact types, such

as software architecture documentation or source code. The same is true for {source_content}
and {target_content} which are placeholders for the actual content of an element. The

second prompt template used, Prompt 7.2, improves on the first one by prompting the

language model to give a reason for its answer. This invokes a from of zero-shot chain-of-

thought prompting. Prompt 7.1 and Prompt 7.2 are used to evaluate all examined artifact

types. Variations of Prompt 7.2 are used in more specific experiments.

7.4 Requirement to Source Code Traceability Link Recovery

To evaluate the retrieval-augmented large language model approach on the requirement

to source code traceability task, a subset of all possible configurations was chosen. The

first experiment included no specific preprocessing, the content of the artifacts is taken

as is. The datasets, SMOS, eTour, and iTrust, use one file for each requirement and each

source code Java file. The goldstandard maps between files.

Table 7.1 shows the results of the experiments. They are grouped by the preprocessing

techniques used on the artifacts. In the first group of experiments the artifacts are not

preprocessed, and whole artifacts are embedded. For the second and third group require-

ments are split into sentences. The source code in the second experiment group is split

into chunks. By default, langchain sets the chunk size to 1000This means, the source code

would be split into chunks containing 1000 characters. For the experiment a chunk size of

200 is used, resulting in pieces of a consistent size, that usually are smaller than methods.

For the source code artifacts in the third group, the methods within a class are extracted.

Comments and class attributes before a method are concatenated to it.

For the classifier, "No LLM" refers to the values calculated based on the similar elements

without prompting the language model. "Yes/No" uses Prompt 7.1, simply asking whether

two artifact parts are related expecting a just ’yes’ or ’no’ as an answer. "Reasoning" refers

to the usage of Prompt 7.2. In addition to answering with "yes" or "no", the language model

is supposed to give a reason, inducing a form of Zero-shot-Chain-of-Thought reasoning.

Single-shot and Few-shot approaches were not considered as they require a known trace

links of a project. A universal constructed example or known trace links of another project

were not used since projects differ in style and form of artifacts.

In all experiments, the 20 most similar elements are compared. This value was chosen, so

it is theoretically possible all trace links are found without comparing an unreasonably

36

7.4 Requirement to Source Code Traceability Link Recovery

SMOS eTour iTrust

Approach P R F1 P R F1 P R F1

COMETbest 0.195 0.572 0.291 0.410 0.468 0.437 0.282

FTLRbest 0.393 0.386 0.390 0.376 0.643 0.475 0.165 0.339 0.222

Preprocessor Classifier

None/

None

No LLM 0.334 0.428 0.375 0.216 0.815 0.342 0.058 0.535 0.105

Yes/No 0.616 0.129 0.214 0.309 0.669 0.423 0.075 0.528 0.132

Reasoning 0.564 0.250 0.346 0.410 0.575 0.478 0.155 0.371 0.219

Sentence/

Chunk

(200)

No LLM 0.195 0.807 0.314 0.086 0.834 0.157 0.063 0.577 0.113

Yes/No 0.275 0.404 0.328 0.158 0.653 0.255 0.089 0.441 0.148

Reasoning 0.230 0.583 0.330 0.135 0.617 0.221 0.094 0.444 0.155

Reasoning,

Artifacts

0.596 0.175 0.271 0.333 0.403 0.365 0.259 0.395 0.313

Sentence/

Method

No LLM 0.212 0.838 0.338 0.071 0.594 0.126 0.060 0.619 0.110

Yes/No 0.294 0.572 0.388 0.097 0.484 0.162 0.088 0.591 0.154

Reasoning 0.275 0.593 0.375 0.109 0.513 0.180 0.102 0.510 0.170

Reasoning,

Artifacts

0.549 0.272 0.364 0.261 0.354 0.301 0.168 0.451 0.245

Table 7.1: Results for Requirement-to-Code Traceability Link Recovery Using the 20 Most

Similar Elements for Each Source Element

large amount of element pairs. Ideally, this value is chosen individually for each project,

however it is difficult to find a value that works well. Depending on the conventions of a

project a single source artifact might be related to many or only a few target artifacts. At

the same time this can vary within the same project. Some projects might not be complete,

and therefore some source artifacts miss target artifacts altogether. While working on this

thesis, comparing a varying number of target elements based on the similarity value to

the source element was theorized, but due to time constraints a fixed value is used.

The rows in Table 7.1 marked with "Artifacts" use the preprocessed elements for similarity

comparisons, but use the original artifact when prompting the large language model.

The experiment in the group without preprocessing also use the original artifacts but

are not marked since finding similar elements is done on the artifacts as well. For both

state-of-the-art approaches COMET and FTLR a number of different configurations exist.

The values used in this table are of the best configuration per dataset as reported by Hey

[10, 11].

In the following paragraph the results of the retrieval baseline are analyzed. Since those

results are taken after the retrieval of similar elements, the recall value serves as an upper

bound for the other experiments in the same preprocessing group. Due to the limit of

37

7 Evaluation

Preprocessor Prompt SMOS eTour iTrust

P R F1 P R F1 P R F1

Sentence/

Method

Prompt 7.2 .549 .272 .364 .261 .354 .301 .168 .451 .245

Prompt 7.3 .345 .606 .44 .125 .539 .203 .099 .57 .169

Table 7.2: Comparison Between Original and Slightly Altered Prompt.

retrieving 20 elements a perfect precision can only be reached if every element had ex-

actly 20 trace links. Therefore, putting an upper bound on the precision of the retrieval

baseline. For the SMOS dataset no preprocessing achieves the lowest recall value with

0.428, while both Sentence/Chunk and Sentence/Method preprocessing achieve a much

higher recall with 0.807 and 0.838 respectively. The results of the iTrust dataset also show

an improvement through preprocessing, where splitting by methods achieves the highest

recall value of 0.619. This would suggest splitting source code artifacts into elements

containing whole methods is a beneficial preprocessing technique when using embedding

based similarity comparisons. However, eTour resulted in a high recall value of 0.815

without any preprocessing, that increased to 0.834 for Sentence/Chunk preprocessing,

while the Sentence/Method preprocessing only achieved a recall value of 0.594, 12 per-

centage points lower than no preprocessing. The size of the element seems to have no

or little effect. Elements containing eTour’s methods have an average size of roughly 860

characters, while SMOS’s elements contain 885 characters on average. When compared

to COMET and FTLR, the retrieval-augmented large language model approach achieves

comparable and for eTour and iTrust even slightly better results for some configurations.

For SMOS the optimal result is achieved with Sentence/Method preprocessing and the

Yes/No classifier using Prompt 7.1 with a F1 score of 0.388, only slightly less than FTLR’s

0.390. The configurations using Prompt 7.2 achieve a F1 score of 0.375 and 0.364. All F1

scores in the Sentence/Method preprocessing group are higher than their Sentence/Chunk

counterpart. One notable value is the F1 score of 0.375 achieved with no preprocessing

and no language model. For the eTour dataset, the approach achieves a F1 score of 0.478

using Prompt 7.2 and no preprocessing. This value is slightly higher than FTLR’s 0.475 F1

score. Due to randomness of the replies of the large language model, this difference might

be negligible. For iTrust, the best result of 0.313 was achieved within the Sentence/Chunk

preprocessing group using Prompt 7.2 with the original aritfacts. This is higher than

FTLR’s F1 value of 0.222 and COMET’s 0.282.

For each tested dataset, the highest F1 score was achieved in a different preprocessing group.

Therefore, it is reasonable to assume the effectiveness of a specific preprocessing technique

heavily depends on characteristics of the examined project. Using the original artifacts

when prompting the language model led to a strong increase in precision, independent of

the dataset and preprocessing technique, while at the same time the recall was decreased

compared to using the preprocessed elements.

38

7.5 Software Architecture Documentation to Software Architecture Model Traceability Link
Recovery

Prompt 7.3: Conceivable Trace Link

Below are two artifacts from the same software system. Is there a conceivable
traceability link between 1 and 2? Give your reasoning and then answer with ’yes’ or

’no’ enclosed in <trace> </trace>.

1 {source_type}: ”’{source_content}”’

2 {target_type}: ”’{target_content}”’

To get an idea what effect a small change to the prompt has, Prompt 7.3 was created.

Instead of asking whether there is "a traceability link" between two artifacts the language

model was asked whether there is "a conceivable traceability link". As Table 7.2 shows,

the recall for all three datasets increased, while the precision decreased. This is in line with

the expectation, as "conceivable" implies more broad ways to find a connection between

two artifacts. However, only the F1 value for SMOS increased, while it decreased for

eTour and iTrust. This shows different prompts are more beneficial for some but not all

projects.

7.5 Software Architecture Documentation to Software
Architecture Model Traceability Link Recovery

The second pair of artifact types on which the retrieval-augmented large language model

traceability link recovery approach is evaluated, are software architecture documentation

and software architecture models. Other than the requirement and code in the previous

chapter, the datasets used share the same file for all artifacts of a type. For the experiments,

software architecture documentation is split into single sentences, as the used gold standard

contains a mapping of sentence to software architecture model component. No further

preprocessing is done on the resulting elements. As described in Section 5.3, different

features can be extracted from the software architecture models. For the evaluation, there

are three groups. The first contains only the component name. The second contains

the name and the names of interfaces the component realizes. The third contains name,

interfaces and the names of components which the model component uses. The same

classifiers as in Section 7.4 are used. However, no original artifacts are used, as those

would be the original file containing all documentation sentences or model components.

Instead, three different variations of the large language model and prompt are tested.

Table 7.3 contains the results of the software architecture documentation to software

architecture model traceability link recovery task. Only the five most similar elements

are taken into account. This is due to the datasets being way smaller and having less

traceability links between documentation sentences and model components. JabRef is the

most extreme example. It only contains six model components in total. Therefore, it is

almost expected to see a perfect recall value. Another anomaly of the JabRef datasets is

that it only contains UML components but no interfaces. This results in all three feature

39

7 Evaluation

BigBlueButton JabRef MediaStore TeamMates TeaStore

Approach P R F1 P R F1 P R F1 P R F1 P R F1

ArDoCo 0.88 0.83 0.85 0.90 1.00 0.95 1.00 0.62 0.77 0.56 0.90 0.69 1.00 0.74 0.85

Features Classifier

Name

No LLM 0.12 0.94 0.21 0.28 1.00 0.43 0.15 0.97 0.26 0.05 0.94 0.09 0.11 0.89 0.20

Yes/No 0.25 0.77 0.38 0.38 1.00 0.55 0.22 0.97 0.36 0.14 0.92 0.25 0.22 0.89 0.36

Reasoning 0.33 0.75 0.46 0.69 1.00 0.82 0.40 0.86 0.54 0.36 0.88 0.51 0.42 0.78 0.55

Name,

Interfaces

No LLM 0.12 0.94 0.21 0.28 1.00 0.43 0.15 0.93 0.25 0.05 0.92 0.09 0.12 0.93 0.21

Yes/No 0.26 0.69 0.37 0.38 1.00 0.55 0.22 0.90 0.35 0.18 0.84 0.29 0.34 0.85 0.49

Reasoning 0.27 0.67 0.39 0.69 1.00 0.82 0.34 0.90 0.50 0.19 0.75 0.31 0.40 0.78 0.53

Name,

Interfaces,

Usages

No LLM 0.12 1.00 0.22 0.28 1.00 0.43 0.15 0.97 0.26 0.05 0.90 0.09 0.12 0.96 0.22

Yes/No 0.22 0.69 0.33 0.38 1.00 0.55 0.22 0.97 0.35 0.12 0.84 0.21 0.28 0.85 0.42

Reasoning 0.22 0.75 0.34 0.69 1.00 0.82 0.24 0.90 0.38 0.13 0.82 0.22 0.32 0.82 0.46

Name

Yes if

certain

0.54 0.62 0.58 0.93 0.78 0.85 0.55 0.79 0.65 0.50 0.77 0.61 0.64 0.67 0.66

Two Steps 0.28 0.19 0.23 0.80 0.22 0.35 0.46 0.66 0.54 0.60 0.65 0.62 0.67 0.30 0.41

Neighbours 0.18 0.92 0.29 0.44 1.00 0.61 0.19 0.97 0.32 0.10 0.92 0.18 0.20 0.89 0.33

Table 7.3: [SAD-SAM] Results for Software Architecture Documentation to Software Ar-

chitecture Model Traceability Link Recovery using the 5 Most Similar Elements

for Each Source Element.

40

7.5 Software Architecture Documentation to Software Architecture Model Traceability Link
Recovery

groups being identical since only component names can be extracted. In general, the

retrieval-augmented large language model approach reaches a good recall with a poor

precision.

For all datasets, both the Yes/No and the Reasoning Classifier increase the precision and

F1 score compared to just using the most similar elements. For some datasets and feature

groups, they perform very similarly, such as with BigBlueButton in the all features group

with an F1 score of 0.33 and 0.34.

When comparing the different feature groups, the best performing group is the group only

containing component names with an average F1 score of 0.51 for the Reasoning Classifier,

excluding JabRef. The other two groups have an average F1 score of 0.43 and 0.35. The

more information the language model gets the worse the results become. This seems to

be in contrast to the results in Section 7.4 where the original artifacts, containing more

information than the elements, achieved better results than elements containing only a

part of the information. However, there are differences between source code artifacts and

model components. By comparison, source code files are large while the only unique part

of a model component is its name.

Reply 7.1

The first artifact mentions a specific requirement related to downloaded audio files

being uniquely connected to a user ID for association purposes. The second artifact

describes a component named "Reencoding" that interfaces with "IDownload" and

uses "IDownload." While the second artifact does not explicitly mention the user ID

association requirement, it does relate to the downloading functionality, which could

potentially be linked to the requirement mentioned in the first artifact. Therefore,

there is a possibility of a traceability link between these two artifacts.

<trace>yes</trace>

By adding the name of a single interface half of the total information is not just about the

element under consideration. The attention of the language model might not be on just

the component name but on the other features. Reply 7.1 is a reply involving an element

with an interface realization and a usage of the same. According to the gold standard,

there should not be a traceability link between the considered artifacts. However, the

reason explains there might be a traceability link due to both artifacts being connected to

downloading.

41

7 Evaluation

Reply 7.2

The first artifact describes the security measure taken by the UserManagement compo-

nent when a user logs into the system. The second artifact describes the components

and interfaces used in the software architecture, including the MediaAccess compo-

nent.

Based on the information provided, there is a traceability link between the artifacts.

The UserManagement component mentioned in the first artifact is likely related to

the MediaAccess component described in the second artifact, as the UserManagement

component is responsible for handling user login security, which could be related to

media access control.

<trace>yes</trace>"

Reply 7.2 contains a reply of the language model for a query using elements from the

MediaStore dataset. The sentence from the software architecture documentation is "When

a user logs into the system, Media Store does not store the password in plain text, but

rather the UserManagement component implements further functions to hash and salt

the passwords.". Instead of figuring out whether the sentence describes the component

"MediaAccess", the explicitly named component "UserManagement" is linked to "Medi-

aAccess".

Reply 7.3

The first artifact mentions a specific functionality related to downloaded audio files

being uniquely connected to a user ID for association purposes. The second artifact de-

scribes a software component named MediaAccess that interfaces with IMediaAccess,

IDownload, IFileStorage, and IDB. While there is no direct mention of downloaded

audio files in the second artifact, the MediaAccess component could potentially be

responsible for handling the functionality described in the first artifact.

<trace>yes</trace>

Reply 7.3 contains a reply in which the language model first describes the artifacts, gives

a reason why there might not be a trace link and then says there might be one without

elaborating.

To get an idea what kind of effect other techniques have on the results, three modified

classifiers are used. The first is a small modification of Prompt 7.2.

42

7.5 Software Architecture Documentation to Software Architecture Model Traceability Link
Recovery

Prompt 7.4: Yes If Certain

Below are two artifacts from the same software system.

Is there a traceability link between 1 and 2? Give your reasoning and then answer

with ’yes’ or ’no’ enclosed in <trace> </trace>. Only answer yes if you are absolutely

certain.

(1) {source_type}: ”’{source_content}”’

(2) {target_type}: ”’{target_content}”’

Prompt 7.4 is the same as the prior prompt with the small addition of a command to only

answer yes if the language model is "absolutely certain". This increased the precision and

F1 score on all datasets. The F1 score increased by 0.10 to 0.12, except on JabRef which

only changed from 0.82 to 0.85 due to lower recall of 0.78. At the same time the recall

decreased on all projects.

Prompt 7.5: Is Component?

You are given a part of a {source_type}. Does it refer specifically to a component?

Give your reasoning and then answer with ’<component>yes</component>’ or

’<component>no</component>’.

{source_type}:

”’{source_content}”’

The second alternative technique queries the large language model two times. Since the

gold standard only references components from the architecture model and no interfaces,

another prompt before the usual reasoning propmt, Prompt 7.2, was added. Prompt 7.5

asks whether the software architecture documentation sentence refers to a component.

Unlike the other used prompts, this prompt is somewhat specific to the software architec-

ture documentation to software architecture model traceability link recovery task. It also

explicitly states the two available answers: <component>yes</component> and <compo-
nent>no</component>. During earlier tests the language model’s replies contained text such

as <yes></yes>. If the language model determines it does refer to a component the language

model is queried as usual. If it does not determine the sentence refers to a component it is

immediately predicted there is no traceability link between the elements. This technique

functions as two language model filters instead of one which can be seen by the low recall

values compared to the other classifiers. Especially for BigBlueButton, JabRef and TeaStore

that have a recall of 0.19, 0.22 and 0.30 respectively. However, TeamMates reaches the

highest precision of 0.60 that is even slightly higher than ArDoCo’s 0.56. Due to the recall

of 0.65 the two-step technique still only reaches an F1 score of 0.62, with ArDoCo reaching

0.69.

43

7 Evaluation

Reply 7.4

The statement provided in the software architecture documentation mentions the

storage of salted hashes of passwords in the Database component. This description is

more related to the data storage aspect of the system rather than a specific software

component. It does not provide details about the functionality or behavior of a

software component itself.

<component>no</component>

Reply 7.5

The provided artifact describes a specific behavior or action related to the system,

which is the storage of a file in the DataStorage component without any modification.

This does not explicitly refer to a component itself but rather to a specific action that

occurs within a component.

<component>no</component>

Reply 7.4 shows an example of the language model missing a component in a documenta-

tion sentence from MediaStore. This example is especially confusing since the Database
component was identified and listed in the reason. Reply 7.5 contains another example of

a missed component. One problem which occurred consistently was the language model

identifying behaviors of the software and then ignoring the related components. This

problem might be alleviated by carefully creating a prompt which tells the language model

to connect behaviors to the involved components if they are mentioned.

Prompt 7.6: Include Neighbours

Below are two artifacts from the same software system. Is there a traceability link

between (1) and (2)? Give your reasoning and then answer with ’yes’ or ’no’ enclosed

in <trace> </trace>.

(1) source_type: ”’source_content”’

(2) target_type: ”’target_content”’

(1) is surrounded by this:

source_context_pre

source_content

source_context_post

The third alternative technique was to include the surrounding sentences for each source

element. The prompt itself, Prompt 7.6 is another variation of Prompt 7.2. If possible in

addition to the source element the sentences that surrounded it in the software architecture

documentation. Up to two sentences before and two sentences after the element are added.

The idea is to increase the available information just like using the original artifacts was

44

7.5 Software Architecture Documentation to Software Architecture Model Traceability Link
Recovery

BigBlueButton JabRef MediaStore TeamMates TeaStore

Approach P R F1 P R F1 P R F1 P R F1 P R F1

ArDoCo 0.88 0.83 0.85 0.90 1.00 0.95 1.00 0.62 0.77 0.56 0.90 0.69 1.00 0.74 0.85

Features Classifier

Name

No LLM 0.48 0.56 0.52 0.53 0.89 0.67 0.31 0.76 0.44 0.70 0.55 0.62 0.38 0.78 0.51

Yes/No 0.58 0.56 0.57 0.71 0.83 0.77 0.37 0.76 0.50 0.72 0.55 0.62 0.48 0.78 0.59

Reasoning 0.64 0.48 0.55 0.79 0.83 0.81 0.46 0.69 0.55 0.79 0.53 0.64 0.58 0.67 0.62

Name,

Interfaces

No LLM 0.48 0.56 0.52 0.53 0.89 0.67 0.31 0.76 0.44 0.65 0.51 0.57 0.40 0.82 0.54

Yes/No 0.69 0.48 0.57 0.71 0.83 0.77 0.42 0.72 0.53 0.74 0.49 0.59 0.59 0.70 0.64

Reasoning 0.69 0.42 0.52 0.79 0.83 0.81 0.53 0.66 0.59 0.81 0.49 0.61 0.45 0.70 0.55

Name,

Interfaces,

Usages

No LLM 0.45 0.52 0.48 0.53 0.89 0.67 0.31 0.76 0.44 0.60 0.47 0.53 0.40 0.82 0.54

Yes/No 0.54 0.44 0.48 0.71 0.83 0.77 0.54 0.72 0.62 0.64 0.45 0.53 0.61 0.70 0.66

Reasoning 0.46 0.44 0.45 0.79 0.83 0.81 0.44 0.69 0.53 0.69 0.47 0.56 0.50 0.78 0.61

Name Yes if

certain

0.72 0.44 0.55 0.88 0.78 0.82 0.55 0.62 0.58 0.79 0.53 0.64 0.68 0.63 0.65

Table 7.4: [SAM-SAD-TLR] Results for Software Architecture Model to Software Archi-

tecture Documentation Traceability Link Recovery using the 5 Most Similar

Elements for Each Source Element.

beneficial for the requirements to source code traceability link recovery task. In addition,

some sentences within an architecture documentation give an explanation or additional

information about the component or behavior described in the prior sentence. By putting

multiple While the recall is the highest for all datasets when using the large language

model, the precision is rather low with values of 0.10 to 0.20, except for JabRef where the

technique reaches a precision of 0.44, which is still lower than the classifier using Prompt

7.2 with a precision of 0.69. The large language model might be confusing the unrelated

parts with the actual element and make false connections. However, when checking the

reasons the large language model generated this does not seem to be a big problem. Instead,

it seems to be make more broad almost hallucinated connections between the elements. For

example, it did connect a sentence about administrator keys and a special login procedure

to a component Common. While such behavior is also noticeable when using Prompt 7.2,

it is not clear why the language model behaved like this in a more pronounced way for

Prompt 7.6.

Nomatterwhich Features are extracted orwhich classifierwas used, the retrieval-augmented

large language model traceability link recovery approach did not reach the performance of

ArDoCo when using documentation sentences as source elements and model components

as target elements. Using Prompt 7.4 leads to the best or close to best F1 scores for this

approach, but still falls short of ArDoCo.

In another experiment the trace direction is switched. Model components are used as

source elements and documentation sentences as target elements. As large language

models can generate replies in very different ways with only small changes to the prompt

45

7 Evaluation

BigBlueButton JabRef MediaStore TeamMates TeaStore

Approach P R F1 P R F1 P R F1 P R F1 P R F1

ArDoCo 0.88 0.83 0.85 0.90 1.00 0.95 1.00 0.62 0.77 0.56 0.90 0.69 1.00 0.74 0.85

Features Classifier

Name

No LLM 0.31 0.71 0.43 0.30 1.00 0.46 0.17 0.86 0.30 0.45 0.71 0.55 0.23 0.93 0.37

Yes/No 0.46 0.67 0.54 0.47 0.89 0.62 0.23 0.86 0.36 0.48 0.71 0.57 0.39 0.93 0.54

Reasoning 0.56 0.58 0.57 0.61 0.94 0.74 0.33 0.79 0.47 0.57 0.69 0.63 0.50 0.78 0.61

Name,

Interfaces

No LLM 0.31 0.71 0.43 0.30 1.00 0.46 0.18 0.86 0.30 0.49 0.77 0.60 0.23 0.93 0.37

Yes/No 0.55 0.50 0.53 0.47 0.89 0.62 0.31 0.83 0.45 0.58 0.73 0.64 0.58 0.78 0.67

Reasoning 0.58 0.48 0.53 0.61 0.94 0.74 0.44 0.72 0.55 0.69 0.75 0.72 0.41 0.78 0.54

Name,

Interfaces,

Usages

No LLM 0.28 0.65 0.40 0.30 1.00 0.46 0.18 0.86 0.30 0.39 0.61 0.47 0.23 0.93 0.37

Yes/No 0.39 0.52 0.45 0.47 0.89 0.62 0.39 0.83 0.53 0.46 0.55 0.50 0.57 0.78 0.66

Reasoning 0.32 0.50 0.39 0.61 0.94 0.74 0.31 0.76 0.44 0.46 0.61 0.53 0.43 0.85 0.57

Name Yes if

certain

0.66 0.52 0.58 0.75 0.83 0.79 0.47 0.69 0.56 0.60 0.67 0.63 0.62 0.67 0.64

Table 7.5: [SAM-SAD-TLR] Results for Software Architecture Model to Software Archi-

tecture Documentation Traceability Link Recovery using the 10 Most Similar

Elements for Each Source Element.

[36] they most likely are sensitive to the order in which the elements are added to the

prompt. Table 7.4 contains the results of the first experiment. The number of the most

similar elements under consideration is still five. The first thing to notice is the rather low

recall values, even for experiments not using the large language model. This indicates

the number of most similar elements is too low. Since the datasets typically contain way

less software architecture model components than software architecture documentation

sentences this is plausible. Table 7.5 contains the results when the tenmost similar elements

are under consideration, that will be discussed shortly. For the experiments using the five

most similar elements, it can be seen that additional features generally decrease the F1

value. However, this effect is less pronounced than it is when tracing the other way around.

When looking only at the Name feature group and the Reasoning classifier, as those

performed best in the previous experiments when ignoring the alternative techniques,

the model to documentation tracing reaches higher F1 values for most datasets with 0.55,

0.81, 0.55, 0.64 and 0.62 compared to 0.46, 0.82, 0.54, 0.51 and 0.55. The performance on

JabRef was slightly worse with 0.81 compared to 0.82. The best performing technique for

documentation to model tracing was using Prompt 7.4. Model to documentation tracing

achieves similar results. On BigBlueButton, JabRef and TeaStore it performs slightly worse

with F1 scores of 0.55, 0.82 and 0.65 compared to 0.58, 0.85 and 0.66. On MediaStore it

achieves an F1 score of only 0.58 compared to the previous 0.65, while on TeamMates the

F1 score increased from 0.61 to 0.64.

Next the results for using the ten most similar elements, as shown in Table 7.5 are discussed.

As expected the recall values increased again, while the precision decreased. The Reasoning

46

7.6 Software Architecture Documentation to Source Code Traceability Link Recovery

BigBlueButton MediaStore TeaStore

Approach P R F1 P R F1 P R F1

TransArC 0.94 0.96 0.95 0.98 1.00 0.99 0.98 0.98 0.98

Preprocessor Classifier

Sentence/

None

No LLM 0.143 0.376 0.207 0.03 0.9 0.059 0.242 0.59 0.344

Yes/No 0.152 0.305 0.203 0.033 0.84 0.064 0.255 0.537 0.345

Reasoning 0.194 0.213 0.203 0.078 0.52 0.135 0.403 0.276 0.327

Sentence/

Chunk

(200)

No LLM 0.145 0.253 0.184 0.056 0.72 0.104 0.285 0.322 0.303

Yes/No 0.156 0.177 0.166 0.068 0.7 0.123 0.316 0.277 0.295

Reasoning 0.234 0.161 0.191 0.09 0.64 0.157 0.318 0.218 0.259

Sentence/

Chunk

(1000)

No LLM 0.169 0.303 0.217 0.051 0.82 0.096 0.28 0.332 0.304

Yes/No 0.184 0.249 0.212 0.056 0.82 0.105 0.3 0.286 0.293

Reasoning 0.195 0.176 0.185 0.077 0.64 0.137 0.338 0.24 0.281

Table 7.6: [SAD-Code-TLR] Results for Software Architecture Documentation to Code

Traceability Link Recovery using the 40 Most Similar Elements for Each Source

Element. Note for the reader: Please check the original TransArC publication to

find the correct values of the TransArC approach.

classifier in the Name and Interface Realization group achieves the best result for the

TeamMates dataset. It even achieves a slightly higher F1 score of 0.72 than ArDoCo’s

0.69. For MediaStore the Reasoning classifer in the Name and Interface Realization group

performed better than the other Feature groups. For BigBlueButton and TeaStore the

results follow the previous results where Interface Realizations tended to decrease the F1

score. The classifier using Prompt 7.4 performs best except for TeamMates and TeaStore.

There is no clear best approach when it comes to the trace direction. In contrast to the re-

quirements to source code traceability link recovery task, the best preprocessing technique

appears to be less dependent on the dataset for the software architecture documentation

to software architecture model traceability link recovery task. This might be due to the

datasets being a lot more similar since the gold standard maps single sentences to compo-

nents, that consist of a name, which often is just a single word, and interface realizations

and usages, both also often being only one or two words.

7.6 Software Architecture Documentation to Source Code
Traceability Link Recovery

The final pair of artifact types discussed in this thesis are software architecture documenta-

tion and source code. Both artifact types have already been discussed in previous chapters.

47

7 Evaluation

Unlike the datasets used in the requirement to code traceability link recovery task, BigBlue-

Button, MediaStore, and TeaStore contain shell script files. As these do not contain Java

methods, the technique to extract Java methods cannot be used for these datasets. Instead,

an additional Chunk splitting preprocessing is used, that splits the source code artifacts

into elements containing at most 1000 characters. This compliments the rather small

number of 200 characters. Just like the previous pairs of artifact types, documentation

and source code are classified using no large language model, Prompt 7.1, and Prompt 7.2.

Table 7.6 contains the results of the retrieval-augmented large language model traceability

link recovery approach using the 40 most similar elements. JabRef and TeamMates are not

considered as their dataset contain software architecture documentation sentences that,

according to the gold standard, have trace links to a very high proportion of the source

code files. JabRef’s first sentence for example, is mapped to 1922 out of 1987 source files.

TeamMate’s first sentence is mapped to 808 out of 834 source files. Since the approach

discussed in this thesis is meant to reduce unnecessary language model queries, such trace

link mappings cannot work well, as long as a fixed amount of most similar elements is

used.

The results of the retrieval-augmented large language model approach do not come close

to TransArC’s. TransArC achieves more than 0.94 for precision, recall and F1 score

for all datasets. The retrieval-augmented large language model approach on the other

hand reaches its highest F1 score of 0.345 on TeaStore. Partly responsible for the poor

performance is the choice of using 40 similar elements. Ignoring elements that do not

appear in the gold standard, sentences from BigBlueButton have 33 trace links on average,

and sentences form TeaStore 30. Both contain at least some sentences with more than 40

trace links. Only MediaStore’s sentences appear less than 40 times in the gold standard

with the most appearing sentence only appearing four times. The precision of not using

the language model is therefore poor. Both language model prompts improve the precision

on all datasets across all preprocessing groups. Like the results of the requirement to

source code traceability link recovery task, there is no preprocessing group which always

performs the best. For MediaStore, the Yes/No classifier achieves better F1 scores than

No LLM, and the Reasoning classifier achieves better F1 scores than the No/Yes classifier.

On the other datasets, No LLM achieved the best F1 score. For BigBlueButton this is the

Chunk(1000) preprocessing with an F1 score of 0.217. For TeaStore this is in the group

without code preprocessing with an F1 score of 0.344.

7.7 Element Similarity

As mentioned in an earlier section, the amount of most similar elements to consider was

thought about, but moved to future work due to time constraints. This section includes

some findings. The Figures in this section contain the distance of single elements over

the number of elements sorted by their distance. A red dot symbolizes an element which,

according to the corresponding gold standard, has a trace link with the element the Figure

is about.

48

7.7 Element Similarity

Figure 7.1: [SAD-Code-TLR] Similarity Distance of the n Most Similar Elements For Medi-

aStore Sentence 20, Sorted By Distance

Figure 7.2: [SAD-Code-TLR] Similarity Distance of the n Most Similar Elements For Medi-

aStore Sentence 9, Sorted By Distance

49

7 Evaluation

Figure 7.1 shows a very good embedding similarity. The only element with a trace link is

at the very beginning and the distance increases quickly. However, the distances for other

elements lead to several kinds of problems.

Figure 7.2 also has the only true positive element as one of the lowest elements. However,

the distances follow an almost linear curve. There is no clear change at which a threshold

could be decided.

Figure 7.3: [SAD-Code-TLR] Similarity Distance of the n Most Similar Elements For TeaSt-

ore Sentence 1, Sorted By Distance

Figure 7.3 shows, that if there is a rapid increase, even after a change to the gradient there

might an element that should be retrieved.

50

7.7 Element Similarity

Figure 7.4: [SAD-Code-TLR] Similarity Distance of the n Most Similar Elements For TeaSt-

ore Sentence 23, Sorted By Distance

Figure 7.5: [SAD-Code-TLR] Similarity Distance of the n Most Similar Elements For TeaSt-

ore Sentence 7, Sorted By Distance

51

7 Evaluation

Figure 7.4 and especially Figure 7.5 illustrate a problem of the approach when a single

element has a lot of trace links. The wanted elements generally clump in the low distance

area in Figure 7.4 and most of them should be considered to be the most similar elements

to TeaStore sentence 23, if the number of elements is set high enough. This is somewhat

problematic for elements with little or no trace links since far too many element pairs will

be compared by the large language model. Figure 7.5 is a lot worse. Sentence 7 has even

more trace links, and they do not just clump to the low distances.

Figure 7.6: [SAD-SAM-TLR] Similarity Distance of the n Most Similar Elements For JabRef

Sentence 7, Sorted By Distance

Figure 7.6 shows a curve which is almost completely flat. It barely contains any information

on where wanted elements might be. Part of the problem is JabRef’s very low count of

only six model component artifacts.

Some of those problems might be alleviated by improving the preprocessing. Better

preprocessing would move the wanted elements towards lower distances and therefore

increase the precision of the retrieval-augmentation. However, problems such as varying

numbers of trace links each element within a dataset has, will not be solved by this. Unless

wanted elements achieve consistently low values and unwanted elements high values. In

this case a change to use thresholds would be preferable.

52

7.8 Cost

eTour

Input Output Total

Tokens Cost Tokens Cost Cost

Preprocessor Classifier Elements

None/None

Yes/No 20 1945348 $9.73 2319 $0.03 $9.76

Reasoning 20 1990588 $9.95 152143 $2.28 $12.24

Yes/No All 11283018 $56.42 13450 $0.20 $56.62

Reasoning All 11545410 $57.73 882429 $13.24 $70.96

Table 7.7: Actual Cost of Using the Approach on eTour for the 20 Most Similar Elements

and approximate Cost if All Elements Would Have Been Compared

7.8 Cost

Table 7.7 shows the costs of the approach using the eTour dataset as an example. Costs

for calculating element embeddings are negligible and are not listed. The prices used

are the current prices OpenAI lists for GPT-3.5-turbo on their pricing page [33]: 0.50$ /

1M input tokens and 1.50$ / 1M output tokens. As of the time of writing, GPT-4-turbo

costs 20 times, and GPT-4o 10 times as much. Cost for "All Elements" are approximations

if each source artifact was paired with each target artifact. The total cost shows how

comparing all source and target elements would lead to much higher costs than when

only a small subset is compared. ETour is also a relatively small project. The amount of

needed comparison only grow linearly for each added source element if a fixed number

of most similar elements is used. But they grow exponentially for each element added if

all comparisons are done. For large projects the retrieval-augmented approach might be

worth using.

7.9 Threads to Validity

In this section the threads to the validity of the evaluation will be discussed.

In terms of internal validity, the main factor is the use of a non-deterministic generating

large language model. Due to the randomness, the results might sway when repeating

the same experiments. To decrease the random nature of language model replies the

temperature was set to 0. To further decrease the effect, I could have run the experiments

multiple times while averaging the individual results. This was not done. The number of

most similar target elements to consider for each source element was an estimate done

based on the collection of datasets.

In terms of external validity, due to the limited amount of projects on which the approach

was evaluated, the results might not generalize to other projects. The datasets used have

53

7 Evaluation

been used in prior work and cover a variety of domains and vary in size. It is possible

some datasets or parts of the datasets were used in the training of GPT3.5-turbo. When

asked, GPT3.5-turbo claims to know of the iTrust project and correctly assigns it to the

healthcare domain. It also gives a correct description of BigBlueButton, TeamMates,

TeaStore, and JabRef. Another threat is rapid development of large language models. This

thesis only used a very limited number of prompts and a single language model. As a

prompt’s performance varies between different large language models. It is unclear how

the approach generalizes to different language models. I tried to reduce the influence of a

potential bias towards the used datasets when creating the prompts used by basing them

on prompts used in prior work.

54

8 Conclusion and Future Works

This thesis set out to develop a system to automatically recover traceability links between

different types of software development artifacts. To bridge the semantic gap a retrieval-

augmented large language models are used. The system uses three steps, preprocessing of

artifacts, retrieval of similar elements to each source element, and classification of source

and target elements using the large language model. On the requirements to source code

traceability link recovery task, the approach achieved results comparable to the state-

of-the-art approaches FTLR and COMET. On the tasks involving software architecture

documentation, the approach did not reach a comparable result to ArDoCo and TransArC

on most datasets. Also, the approach cannot be used if (single) artifacts are expected to

have a very large number of trace links. Based on the few variations of prompts, the

result can change quite a bit even if the prompt does not change drastically. However,

in most cases the direction of change, that is whether precision and recall increase or

decrease, is predictable. Prompts asking for a reasoning tend to perform better than

simple yes/no prompts. One reoccurring problem with those prompts, is the freedom

the language model has in finding connections between software development artifacts.

While evaluating the system it became clear, the best representation of an artifact to find

similar artifacts based on similarity of their embeddings is not necessarily the same as the

best representation of those artifacts when prompting a large language model. For the

requirement to source code traceability link recovery task, configurations using the original

artifacts instead of preprocessed elements tended to achieve a better performance. Whether

some combination of preprocessed element and original artifact might perform even better

is left as future work. How many of the most similar elements to consider when recovering

trace links is a non-trivial problem which needs more work. This became very clear

when evaluating the software architecture model to software architecture documentation

traceability task. Neither a fixed number nor a fixed threshold seem applicable. Not just

because of differences between datasets but also differences between artifacts within a

project. Future work might focus on dynamically finding a threshold or improving the

retrieval part of this approach. It is possible to replace the embedding approach with

another traceability link recovery approach and use the large language model as a filter

for its results. In general, using the language model lead to an improved performance

compared to just the embedding-based retrieval method. It was also shown, that more

information can either be beneficial or be a hindrance. If possible it should relate directly

to the element or artifact under consideration.

During the thesis, several more future works and ways to enhance the system became clear.

Some of them could not be implemented due to time constraints. An additional classifier

was planned, that receives multiple target elements at once and the large language model

55

8 Conclusion and Future Works

either picks related elements or sorts them by their likelihood to have a trace link to a

given source element. Instead of extracting features from the architecture model artifacts

it might be better to do no preprocessing and instead prompt the language model using

the XML code the UML model was stored as. A problem that was noticed while working

with source code files was, that only one specific form of source code, that is Java files,

is supported. However, projects can contain several kinds of source code artifacts. The

system can be extended with a way to use different preprocessors for different kinds of

artifacts withing the source or target group. Lastly, as the landscape of large language

models is changing rapidly, the approach can be tested with several, newer language

models. Additionally, during the creation of this thesis, OpenAI released a functionality to

set a seed value when querying one of their large language models. Future research might

want to set a seed to further decrease the non-random nature of language models.

56

Bibliography

[1] Victor R. Basili and David M. Weiss. “A Methodology for Collecting Valid Software

Engineering Data”. In: IEEE Transactions on Software Engineering SE-10.6 (1984),

pp. 728–738. doi: 10.1109/TSE.1984.5010301.

[2] Center of Excellence for Software & Systems Traceability (CoEST) Datasets. url: http:
//sarec.nd.edu/coest/datasets.html (visited on 05/16/2024).

[3] Harrison Chase. LangChain. Oct. 2022. url: https://github.com/langchain-
ai/langchain.

[4] ChromaDB. url: https://www.trychroma.com/.

[5] Jane Cleland-Huang, Orlena Gotel, and Andrea Zisman, eds. Software and Systems
Traceability. London: Springer London, 2012. isbn: 978-1-4471-2238-8 978-1-4471-
2239-5. doi: 10.1007/978-1-4471-2239-5. url: http://link.springer.com/10.

1007/978-1-4471-2239-5 (visited on 02/04/2021).

[6] Matthijs Douze et al. “The Faiss library”. In: (2024). arXiv: 2401.08281 [cs.LG].

[7] Embedding projector - visualization of high-dimensional data. url: http://projector.
tensorflow.org (visited on 12/11/2023).

[8] Dominik Fuchß et al. “Establishing a Benchmark Dataset for Traceability Link

Recovery Between Software Architecture Documentation and Models”. In: Software
Architecture. ECSA 2022 Tracks and Workshops. Ed. by Thais Batista et al. Cham:

Springer International Publishing, 2023, pp. 455–464. isbn: 978-3-031-36889-9.

[9] Orlena Gotel et al. “Traceability Fundamentals”. In: Software and Systems Traceability.
Ed. by Jane Cleland-Huang, Orlena Gotel, and Andrea Zisman. London: Springer

London, 2012, pp. 3–22. isbn: 978-1-4471-2239-5. doi: 10.1007/978-1-4471-2239-

5_1. url: https://doi.org/10.1007/978-1-4471-2239-5_1.

[10] Tobias Hey. “Automatische Wiederherstellung von Nachverfolgbarkeit zwischen

Anforderungen und Quelltext”. PhD thesis. Karlsruher Institut für Technologie

(KIT) / Karlsruher Institut für Technologie (KIT), 2023. 314 pp. doi: 10.5445/IR/

1000162446.

[11] Tobias Hey. Fine-grained Traceability Link Recovery (FTLR). Sept. 2023. doi: 10.5281/
zenodo.8367392. url: https://doi.org/10.5281/zenodo.8367392.

[12] TobiasHey et al. “Improving Traceability Link Recovery Using Fine-grained Requirements-

to-Code Relations”. In: 2021 IEEE International Conference on Software Maintenance
and Evolution (ICSME). ISSN: 2576-3148. Sept. 2021, pp. 12–22. doi: 10 . 1109 /
ICSME52107.2021.00008.

57

https://doi.org/10.1109/TSE.1984.5010301
http://sarec.nd.edu/coest/datasets.html
http://sarec.nd.edu/coest/datasets.html
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://www.trychroma.com/
https://doi.org/10.1007/978-1-4471-2239-5
http://link.springer.com/10.1007/978-1-4471-2239-5
http://link.springer.com/10.1007/978-1-4471-2239-5
https://arxiv.org/abs/2401.08281
http://projector.tensorflow.org
http://projector.tensorflow.org
https://doi.org/10.1007/978-1-4471-2239-5_1
https://doi.org/10.1007/978-1-4471-2239-5_1
https://doi.org/10.1007/978-1-4471-2239-5_1
https://doi.org/10.5445/IR/1000162446
https://doi.org/10.5445/IR/1000162446
https://doi.org/10.5281/zenodo.8367392
https://doi.org/10.5281/zenodo.8367392
https://doi.org/10.5281/zenodo.8367392
https://doi.org/10.1109/ICSME52107.2021.00008
https://doi.org/10.1109/ICSME52107.2021.00008

Bibliography

[13] “IEEE Standard Glossary of Software Engineering Terminology”. In: IEEE Std 610.12-
1990 (1990), pp. 1–84. doi: 10.1109/IEEESTD.1990.101064.

[14] Gautier Izacard and Edouard Grave. “Leveraging Passage Retrieval with Genera-

tive Models for Open Domain Question Answering”. In: Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume. EACL 2021. Ed. by Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty.

Online: Association for Computational Linguistics, Apr. 2021, pp. 874–880. doi:

10.18653/v1/2021.eacl-main.74. url: https://aclanthology.org/2021.eacl-

main.74 (visited on 01/03/2024).

[15] Gautier Izacard et al. Atlas: Few-shot Learning with Retrieval Augmented Language
Models. Nov. 16, 2022. arXiv: 2208.03299[cs]. url: http://arxiv.org/abs/2208.
03299 (visited on 01/03/2024).

[16] Jan Keim et al. “Detecting Inconsistencies in Software Architecture Documentation

Using Traceability Link Recovery”. en. In: 2023 IEEE 20th International Conference
on Software Architecture (ICSA). L’Aquila, Italy: IEEE, Mar. 2023, pp. 141–152. isbn:

9798350397499. doi: 10.1109/ICSA56044.2023.00021. url: https://ieeexplore.

ieee.org/document/10092702/ (visited on 12/19/2023).

[17] Jan Keim et al. “Recovering Trace Links Between Software Documentation And

Code”. In: Proceedings of the IEEE/ACM 46th International Conference on Software En-
gineering. ICSE ’24. <conf-loc>, <city>Lisbon</city>, <country>Portugal</country>,

</conf-loc>: Association for Computing Machinery, 2024. isbn: 9798400702174. doi:

10.1145/3597503.3639130. url: https://doi.org/10.1145/3597503.3639130.

[18] Jan Keim et al. “Trace Link Recovery for Software Architecture Documentation”. In:

Software Architecture. Ed. by Stefan Biffl et al. Lecture Notes in Computer Science.

Cham: Springer International Publishing, 2021, pp. 101–116. isbn: 978-3-030-86044-8.

doi: 10.1007/978-3-030-86044-8_7.

[19] Takeshi Kojima et al. “Large Language Models are Zero-Shot Reasoners”. In: Ad-
vances in Neural Information Processing Systems. Ed. by S. Koyejo et al. Vol. 35. Cur-

ran Associates, Inc., 2022, pp. 22199–22213. url: https://proceedings.neurips.

cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-

Conference.pdf.

[20] Large Language Models (LLMs) with Google AI. Google Cloud. url: https://cloud.
google.com/ai/llms (visited on 12/10/2023).

[21] Haejun Lee et al. “You Only Need OneModel for Open-domain Question Answering”.

In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing. EMNLP 2022. Ed. by Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang.

Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, Dec.

2022, pp. 3047–3060. doi: 10.18653/v1/2022.emnlp- main.198. url: https://

aclanthology.org/2022.emnlp-main.198 (visited on 01/03/2024).

58

https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.18653/v1/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://arxiv.org/abs/2208.03299 [cs]
http://arxiv.org/abs/2208.03299
http://arxiv.org/abs/2208.03299
https://doi.org/10.1109/ICSA56044.2023.00021
https://ieeexplore.ieee.org/document/10092702/
https://ieeexplore.ieee.org/document/10092702/
https://doi.org/10.1145/3597503.3639130
https://doi.org/10.1145/3597503.3639130
https://doi.org/10.1007/978-3-030-86044-8_7
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://cloud.google.com/ai/llms
https://cloud.google.com/ai/llms
https://doi.org/10.18653/v1/2022.emnlp-main.198
https://aclanthology.org/2022.emnlp-main.198
https://aclanthology.org/2022.emnlp-main.198

[22] Patrick Lewis et al. “Retrieval-Augmented Generation for Knowledge-Intensive

NLP Tasks”. In: Advances in Neural Information Processing Systems. Vol. 33. Curran
Associates, Inc., 2020, pp. 9459–9474. url: https://proceedings.neurips.cc/

paper_files/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.

html (visited on 10/26/2023).

[23] Hongliang Liang, Dengji Hang, and Xiangyu Li. “Modeling function-level inter-

actions for file-level bug localization”. en. In: Empirical Software Engineering 27.7

(Oct. 2022). issn: 1573-7616. doi: 10 . 1007 / s10664 - 022 - 10237 - z. url: https :

//doi.org/10.1007/s10664-022-10237-z (visited on 12/14/2022).

[24] Jinfeng Lin et al. “Traceability Transformed: Generating More Accurate Links with

Pre-Trained BERT Models”. In: 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). ISSN: 1558-1225. May 2021, pp. 324–335. doi: 10.1109/

ICSE43902.2021.00040.

[25] Pengfei Liu et al. “Pre-train, Prompt, and Predict: A Systematic Survey of Prompting

Methods in Natural Language Processing”. In:ACMComputing Surveys 55.9 (Sept. 30,
2023), pp. 1–35. issn: 0360-0300, 1557-7341. doi: 10.1145/3560815. url: https:

//dl.acm.org/doi/10.1145/3560815 (visited on 11/07/2023).

[26] Zhengmao Luo,WenyaoWang, and CaiChun Cen. “Improving Bug Localization with

Effective Contrastive Learning Representation”. In: IEEE Access (2022). Conference
Name: IEEE Access, pp. 32523–32533. issn: 2169-3536. doi: 10.1109/ACCESS.2022.

3228802.

[27] Chris Mills et al. “Tracing with Less Data: Active Learning for Classification-Based

Traceability Link Recovery”. en. In: 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME). Cleveland, OH, USA: IEEE, Sept. 2019, pp. 103–
113. isbn: 978-1-72813-094-1. doi: 10.1109/ICSME.2019.00020. url: https://

ieeexplore.ieee.org/document/8919048/ (visited on 12/19/2023).

[28] Model Pricing. Anthropic. url: https://www-files.anthropic.com/production/
images/model_pricing_dec2023.pdf (visited on 12/10/2023).

[29] Models | OpenAI. url: https://platform.openai.com/docs/models/gpt-3-5-
turbo (visited on 05/12/2024).

[30] Kevin Moran et al. “Improving the effectiveness of traceability link recovery using

hierarchical bayesian networks”. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. ICSE ’20. New York, NY, USA: Association

for Computing Machinery, June 2020, pp. 873–885. isbn: 978-1-4503-7121-6. doi:

10.1145/3377811.3380418. url: https://doi.org/10.1145/3377811.3380418

(visited on 01/05/2021).

[31] Shiva Nejati et al. “A SysML-based approach to traceability management and design

slicing in support of safety certification: Framework, tool support, and case studies”.

In: Information and Software Technology. Special Section: Engineering Complex

Software Systems through Multi-Agent Systems and Simulation 54.6 (June 1, 2012),

pp. 569–590. issn: 0950-5849. doi: 10.1016/j.infsof.2012.01.005. url: https:

59

https://proceedings.neurips.cc/paper_files/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.1007/s10664-022-10237-z
https://doi.org/10.1007/s10664-022-10237-z
https://doi.org/10.1007/s10664-022-10237-z
https://doi.org/10.1109/ICSE43902.2021.00040
https://doi.org/10.1109/ICSE43902.2021.00040
https://doi.org/10.1145/3560815
https://dl.acm.org/doi/10.1145/3560815
https://dl.acm.org/doi/10.1145/3560815
https://doi.org/10.1109/ACCESS.2022.3228802
https://doi.org/10.1109/ACCESS.2022.3228802
https://doi.org/10.1109/ICSME.2019.00020
https://ieeexplore.ieee.org/document/8919048/
https://ieeexplore.ieee.org/document/8919048/
https://www-files.anthropic.com/production/images/model_pricing_dec2023.pdf
https://www-files.anthropic.com/production/images/model_pricing_dec2023.pdf
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://doi.org/10.1145/3377811.3380418
https://doi.org/10.1145/3377811.3380418
https://doi.org/10.1016/j.infsof.2012.01.005
https://www.sciencedirect.com/science/article/pii/S095058491200016X
https://www.sciencedirect.com/science/article/pii/S095058491200016X
https://www.sciencedirect.com/science/article/pii/S095058491200016X

Bibliography

//www.sciencedirect.com/science/article/pii/S095058491200016X (visited on

11/13/2023).

[32] New embedding models and API updates | OpenAI. url: https://openai.com/index/
new-embedding-models-and-api-updates/ (visited on 05/26/2024).

[33] Pricing. OpenAI. url: https://openai.com/pricing (visited on 07/06/2024).

[34] Ori Ram et al. “In-Context Retrieval-Augmented Language Models”. In: Transactions
of the Association for Computational Linguistics 11 (Nov. 2023), pp. 1316–1331. issn:
2307-387X. doi: 10.1162/tacl_a_00605. url: https://doi.org/10.1162/tacl_a_

00605 (visited on 12/22/2023).

[35] Alberto D. Rodriguez, Jane Cleland-Huang, and Davide Falessi. “Leveraging In-

termediate Artifacts to Improve Automated Trace Link Retrieval”. In: 2021 IEEE
International Conference on Software Maintenance and Evolution (ICSME). ISSN: 2576-
3148. Sept. 2021, pp. 81–92. doi: 10.1109/ICSME52107.2021.00014.

[36] Alberto D. Rodriguez, Katherine R. Dearstyne, and Jane Cleland-Huang. “Prompts

Matter: Insights and Strategies for Prompt Engineering in Automated Software

Traceability”. In: 2023 IEEE 31st International Requirements Engineering Conference
Workshops (REW). 2023, pp. 455–464. doi: 10.1109/REW57809.2023.00087.

[37] Roie Schwaber-Cohen. Vector Embeddings for Developers: The Basics | Pinecone. url:
https://www.pinecone.io/learn/vector-embeddings-for-developers/ (visited

on 12/11/2023).

[38] Roie Schwaber-Cohen. What is a Vector Database & How Does it Work? Use Cases
+ Examples | Pinecone. url: https://www.pinecone.io/learn/vector-database/
(visited on 12/11/2023).

[39] Weijia Shi et al. REPLUG: Retrieval-Augmented Black-Box Language Models. May 24,

2023. doi: 10.48550/arXiv.2301.12652. arXiv: 2301.12652[cs]. url: http://

arxiv.org/abs/2301.12652 (visited on 01/02/2024).

[40] Hendrik Strobelt et al. “Interactive and Visual Prompt Engineering for Ad-hoc Task

Adaptation With Large Language Models”. In: IEEE Transactions on Visualization
and Computer Graphics (2022), pp. 1–11. issn: 1077-2626, 1941-0506, 2160-9306. doi:
10.1109/TVCG.2022.3209479. url: https://ieeexplore.ieee.org/document/

9908590/ (visited on 12/11/2023).

[41] Text generation - OpenAI API. url: https://platform.openai.com/docs/guides/
text-generation (visited on 06/18/2024).

[42] James Thorne et al. “FEVER: a Large-scale Dataset for Fact Extraction and VERifi-

cation”. In: Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers). NAACL-HLT 2018. Ed. by Marilyn Walker, Heng Ji, and Amanda

Stent. New Orleans, Louisiana: Association for Computational Linguistics, June 2018,

pp. 809–819. doi: 10.18653/v1/N18-1074. url: https://aclanthology.org/N18-

1074 (visited on 01/03/2024).

[43] Tokenizer. OpenAI Platform. url: https://openai.com/pricing (visited on 12/10/2023).

60

https://www.sciencedirect.com/science/article/pii/S095058491200016X
https://www.sciencedirect.com/science/article/pii/S095058491200016X
https://www.sciencedirect.com/science/article/pii/S095058491200016X
https://www.sciencedirect.com/science/article/pii/S095058491200016X
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/pricing
https://doi.org/10.1162/tacl_a_00605
https://doi.org/10.1162/tacl_a_00605
https://doi.org/10.1162/tacl_a_00605
https://doi.org/10.1109/ICSME52107.2021.00014
https://doi.org/10.1109/REW57809.2023.00087
https://www.pinecone.io/learn/vector-embeddings-for-developers/
https://www.pinecone.io/learn/vector-database/
https://doi.org/10.48550/arXiv.2301.12652
https://arxiv.org/abs/2301.12652 [cs]
http://arxiv.org/abs/2301.12652
http://arxiv.org/abs/2301.12652
https://doi.org/10.1109/TVCG.2022.3209479
https://ieeexplore.ieee.org/document/9908590/
https://ieeexplore.ieee.org/document/9908590/
https://platform.openai.com/docs/guides/text-generation
https://platform.openai.com/docs/guides/text-generation
https://doi.org/10.18653/v1/N18-1074
https://aclanthology.org/N18-1074
https://aclanthology.org/N18-1074
https://openai.com/pricing

[44] Jason Wei et al. “Chain-of-Thought Prompting Elicits Reasoning in Large Language

Models”. In: Advances in Neural Information Processing Systems. Ed. by S. Koyejo et al.
Vol. 35. Curran Associates, Inc., 2022, pp. 24824–24837. url: https://proceedings.

neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-

Paper-Conference.pdf.

[45] Tongshuang Wu, Michael Terry, and Carrie Jun Cai. “AI Chains: Transparent and

Controllable Human-AI Interaction by Chaining Large Language Model Prompts”.

In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
CHI ’22. New York, NY, USA: Association for Computing Machinery, Apr. 29, 2022,

pp. 1–22. isbn: 978-1-4503-9157-3. doi: 10.1145/3491102.3517582. url: https:

//dl.acm.org/doi/10.1145/3491102.3517582 (visited on 12/11/2023).

[46] Liping Zhao et al. “Natural Language Processing for Requirements Engineering: A

Systematic Mapping Study”. In: ACM Comput. Surv. 54.3 (Apr. 2021). issn: 0360-0300.
doi: 10.1145/3444689. url: https://doi.org/10.1145/3444689.

61

https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.1145/3491102.3517582
https://dl.acm.org/doi/10.1145/3491102.3517582
https://dl.acm.org/doi/10.1145/3491102.3517582
https://doi.org/10.1145/3444689
https://doi.org/10.1145/3444689

	Abstract
	Zusammenfassung
	Introduction
	Fundamentals
	Traceability Link Recovery
	Large Language Model
	Embeddings
	Prompting

	Datasets
	Use Cases and Source Code
	Software Architecture Documentation, Software Architecture Models and Source Code

	Approach
	Preprocessing
	Candidate Retrieval
	Traceability Link Recovery
	Traceability Link Recovery Tasks
	Requirements to Source Code
	Software Architecture Documentation to Software Architecture Model
	Software Architecture Documentation to Source Code

	Framework
	Data Classes
	Artifact Provider
	Preprocessor
	Embedding Creator
	Element Store
	Classifier
	Result Aggregator
	Controller

	Related Works
	Traceability Link Recovery
	Related Problems
	Retrieval Augmented Generation

	Evaluation
	GQM Plan
	Baselines
	General Prompts
	Requirement to Source Code Traceability Link Recovery
	Software Architecture Documentation to Software Architecture Model Traceability Link Recovery
	Software Architecture Documentation to Source Code Traceability Link Recovery
	Element Similarity
	Cost
	Threads to Validity

	Conclusion and Future Works
	Bibliography

