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Abstract

Traceability between requirements and software architecture models is essential for
maintaining security-critical systems, as it ensures that implementations remain consis-
tent with requirements and compliant with security constraints. Existing approaches
such as SWATTR focus primarily on trace links to components, while dataflow-oriented
requirements have not been considered so far. This thesis extends traceability ap-
proaches to security-related dataflows by leveraging large language models (LLMs) for
entity extraction and trace link recovery, and by extending the underlying metamodel
with dataflow representations. As a case study, requirements from the open-source
EVerest framework for electric vehicle charging were annotated with SecLan element
types and used to construct a gold standard. This dataset provides the evaluation
basis and contributes a valuable resource, as labeled security-related requirements
are otherwise scarce. The evaluation shows that GPT-4.1 can extract dataflow-related
elements with promising accuracy. For components, a recall of 0.92 and an F2-score of
0.86 were achieved, clearly outperforming the SWATTR baseline (recall 0.80, F2-score
0.44). Across all dataflow-related element types, the extraction reached an overall recall
of 0.78 and an F2-score of 0.73. For trace link recovery, GPT-4.1 surpassed SWATTR
when provided with manually extracted elements. For tracing components, GPT-4.1
achieved a precision of 0.88 and a recall of 0.88, while SWATTR produced worse results
(precision 0.77 and recall 0.73). At the same time, GPT-4.1 proved more sensitive to
automatic extraction, while SWATTR was more robust under such conditions. In the
final step, trace links were created for all annotated dataflows in the gold standard and
additional valid flows were discovered beyond it. These findings indicate that LLM-
based approaches can extend traceability beyond component-level links and provide
a foundation to introduce tracing of dataflows. While challenges remain, especially
regarding the reliable extraction of complete dataflows, the results demonstrate the
potential of LLMs to complement heuristic approaches in creating detailed trace links
for security-related requirements.
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Zusammenfassung

Die Riickverfolgbarkeit zwischen Anforderungen und Softwarearchitekturmodellen ist
eine wesentliche Grundlage fiir die Wartung sicherheitskritischer Systeme, da sie sicher-
stellt, dass Implementierungen konsistent mit den Anforderungen bleiben und Sicher-
heitsvorgaben einhalten. Bestehende Ansétze wie SWATTR konzentrieren sich in erster
Linie auf Trace Links zu Komponenten, wéhrend datenflussorientierte Anforderungen
bisher nicht beriicksichtigt wurden. Diese Arbeit erweitert bestehende Traceability-
Ansitze um sicherheitsrelevante Datenfliisse, indem Large Language Models (LLMs)
fur die Extraktion von Entitaten und die Erstellung von Trace Links eingesetzt sowie
das zugrunde liegende Metamodell um Datenflussreprasentationen erganzt werden.
Als Fallstudie wurden Anforderungen aus dem Open-Source-Framework EVerest fiir
das Laden von Elektrofahrzeugen mit SecLan-Elementtypen annotiert und zur Erstel-
lung eines Goldstandards genutzt. Dieses Datenset bildet die Grundlage der Evaluation
und stellt zugleich eine wertvolle Ressource dar, da annotierte sicherheitsrelevante
Anforderungen bislang nur in sehr geringem Umfang verfiigbar sind. Die Evaluation
zeigt, dass GPT-4.1 Datenfluss-bezogene Elemente mit vielversprechender Genauigkeit
extrahieren kann. Fiir Komponenten wurde ein Recall von 0,92 und ein F2-Wert von
0,86 erreicht, womit der SWATTR-Baseline-Ansatz (Recall 0,80, F2-Wert 0,44) deutlich
tibertroffen wurde. Uber alle Elementtypen hinweg erreichte die Extraktion einen Recall
von 0,78 und einen F2-Wert von 0,73. Bei der Trace-Link-Erstellung iibertraf GPT-4.1
SWATTR, wenn manuell extrahierte Elemente genutzt wurden. Fiir die Verkniipfung
von Komponenten erzielte GPT-4.1 eine Prazision von 0,88 und einen Recall von 0,88,
wiahrend SWATTR geringere Werte erreichte (Préazision 0,77, Recall 0,73). Gleichzeitig
erwies sich GPT-4.1 bei automatisch extrahierten Eingaben als anfilliger, wahrend
SWATTR in diesen Fallen robuster war. Im letzten Schritt konnten Trace Links fiir alle
im Goldstandard annotierten Datenfliisse erstellt werden. Zusétzlich wurden weitere
giiltige Fliisse entdeckt, die bisher nicht annotiert waren. Diese Ergebnisse zeigen, dass
LLM-basierte Ansatze die Riickverfolgbarkeit tiber reine Komponenten-Verkniipfungen
hinaus erweitern und eine Grundlage fiir die Einfithrung von Datenfluss-Tracing bieten
konnen. Trotz bestehender Herausforderungen, insbesondere bei der zuverlassigen Ex-
traktion vollstandiger Datenfliisse, verdeutlichen die Resultate das Potenzial von LLMs,
heuristische Ansatze zu erganzen und detaillierte Trace Links fiir sicherheitsrelevante
Anforderungen zu ermdéglichen.
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1 Introduction

Traceability between software artifacts plays a crucial role in software engineering
because it enables developers to better understand relationships between requirements,
design decisions, and implementation artifacts, leading to fewer errors and effort during
system evolution. Traceability not only reduces the effort of maintenance activities
such as change management, but also increases their accuracy. By making explicit
the connections between artifacts, developers can more reliably identify the correct
elements to modify [15]. Together, these benefits ensure consistency and alignment
between requirements, design, and implementation artifacts [39].

Although traceability provides benefits across domains, security-critical domains bene-
fit in particular, as trace links make it possible to check whether security requirements
are properly addressed within a system. For example, a requirement may state that the
system must provide secure communication with external services. With proper trace-
ability, this requirement can be directly linked to the communication component in the
software architecture model (SAM), and further to the corresponding implementations
in the source code. This makes it easier for developers to check if the SAM or source
code aligns with the requirement.

An example of a security-critical domain is electric vehicle (EV) charging, where sys-
tems involve security-sensitive interactions such as authentication and payment data
exchange. For this, standards like IS0 15118 and OCPP, that define handling of cre-
dentials and financial transactions are commonly used [27, 19]. Compliance with and
usage of such standards are often described in the requirements of respective systems.
Requirements like these typically affect several sub-systems, including the vehicle, the
charging station, and backend services, and therefore require implementation across
system boundaries. Establishing detailed trace links for such requirements is therefore
particularly valuable, as it ensures that security constraints regarding data storage
and dataflow are consistently upheld across the system and that modifications do not
introduce vulnerabilities.

Ideally, traceability should be ubiquitous, meaning it should be built into the software
engineering process [7]. Through this idea, tool-supported approaches are used to
generate trace links automatically during the normal development process instead of
manually creating trace links after development. The effort and cost of maintaining
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trace links are largely reduced, since traceability information is continuously collected,
analyzed, and presented to support relevant tasks. For example, a developer imple-
menting a new user story can immediately access automatically captured trace data to
understand its potential impact on related code, test cases, or requirements. Embedding
traceability in the development process can minimize overhead, increase accuracy, and
provide immediate benefits across projects, especially in security-related domains.
Several approaches have been proposed to automate the creation of trace links. Early
work focused on information retrieval techniques, which calculate textual similarity
between artifacts such as requirements and source code [7, 1]. Other traceability ap-
proaches like SWATTR also make use of heuristics to recover trace links from sentences
to components [17, 16]. While effective in some contexts, these methods often struggle
with inconsistent terminology across artifacts. More recently, pre-trained Large Lan-
guage Models (LLMs) have been applied to TLR, showing promising results for linking
requirements to goals, source code, and architectural components [12, 13, 9].

This thesis focuses on extending the heuristic trace link recovery approach, SWATTR, to
incorporate security-related aspects. The goal is to support tracing sensitive dataflows
to software architecture elements by making use of the existing framework. In order
to do so, as a first step, dataflow entities have to be extracted from requirements. By
leveraging pre-trained LLMs for named entity recognition [13], additional dataflow-
related element types can be included without the need for hand-crafted heuristics. In
a second step, the used metamodel is extended with elements representing dataflows,
making it possible to create trace links between requirement-level dataflows and their
counterparts in the software architecture model. On this basis, the connections between
respective trace artifacts can be established with the support of LLMs, avoiding the
need to rely solely on traditional heuristics.

This thesis aims to address the following research questions:

1. How accurately can dataflow entities from natural language requirement texts be
extracted?

a) How accurately can dataflow-related elements (components, data, entity,
nodes) be extracted from requirements.

b) How accurately can dataflows be extracted from requirements.

2. How accurately can trace links between data flow elements from requirements
and architecture models be created?

a) How accurately can dataflow-related elements be traced to architecture
models?

b) How accurately can dataflows be traced to architecture models?



By answering these research questions, this thesis aims to extend existing traceability
approaches to incorporate security-related dataflows, thereby enhancing the automation
and reliability of security requirement verification in software models.

As a case study, this thesis builds on the EVerest framework for electric vehicle charging.
EVerest is an open-source platform that defines modular components for managing
charging processes and backend communication. Building on prior work, security-
related requirements have been elicited from EVerest, which provide the evaluation
basis for the tasks described above. A gold standard was created for this purpose, which
is also part of this thesis.

Chapter 2 introduces the foundations of this thesis, followed by Chapter 3, where related
work on named entity extraction and trace link recovery is reviewed. Chapter 4 explains
the creation of the gold standard and provides details on the annotated element types.
Chapter 5 presents the approach developed in this work, starting with the extraction
of elements and continuing with trace link generation and integration into SWATTR.
Chapter 6 describes the evaluation of the different approaches, including comparisons
with SWATTR. Finally, Chapter 7 summarizes the results and outlines possible future
work.






2 Foundation

This chapter introduces the technical foundations required for the methods and eval-
uations in this thesis. Section 2.1 outlines trace link recovery with SWATTR. The
Palladio Component Model is presented in Section 2.2, followed by dataflow analysis
in Section 2.3. Section 2.4 introduces the EVerest framework, which serves as the case
study. The SecLan system model is described in Section 2.5, providing the element
types used for annotation. Section 2.6 summarizes large language models and prompt
engineering, and Section 2.7 defines the evaluation metrics applied throughout this
work. Together, these foundations provide the basis for the approach and evaluations
presented in the following chapters.

2.1 Trace Link Recovery

Through previous work, the automated trace link generation framework formerly
named Software Architecture Text Trace Link Recovery (SWATTR) has been developed,
with Architecture Documentation Consistency (ArDoCo) acting as a collection con-
taining different approaches, including SWATTR [17, 16]. In SWATTR, Trace Links
are recovered from the architecture documentation and architecture model. Overall,
the approach can be separated into different steps depicted in Figure 2.1. ArDoCo

- Trace
»|  Text Extraction > Eement > Element Links
Identification Connection
Architecture ry 'y

Documentation

Model Extraction

Architecture
Model

Figure 2.1: ArDoCo Trace Link Recovery Steps [17]
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follows a structured, multi-stage process to establish trace links between architecture
documentation and model elements. The key steps in this process include:

1. Text Extraction: The system processes architectural documentation to identify
elements such as named components and types. Natural Language Processing
(NLP) techniques are employed to extract and classify named elements or types
of elements. In order to diminish the number of missed trace links in later stages,
the classification aims for a higher recall.

2. Model Extraction: In parallel, the architecture model is analyzed to extract struc-
tured component information, including element names, types, and relationships.
This structured data serves as the reference for creating trace links.

3. Element Identification: The extracted text and model elements are used to identify
corresponding elements. Although the Element Identification step is independent
of the actual model, it can access metamodel information, e.g., architecture element
types. In this stage, also called Recommendation Stage, analyses are made to
identify patterns accompanying element mentions like type-name and name-type.
Informants can create Recommended Instances as potential matches, which will be
later used to create trace links.

4. Trace Link Creation: Different trace links between documentation and model
elements can be established once potential matches are identified. Comparing
results from different agents makes calculating confidence for each trace link
possible. When the confidence is high enough, a trace link is created.

Each step uses different agents that provide different analyses, based on information
provided by informants. Most of the actual computation is done by the informants, that
write their results into the shared data repository. The agent itself mainly provides the
structure of the stage, defining which informants are executed and in what order.
Figure 2.2 illustrates this for the text extraction stage. The InitialTextAgent groups infor-
mants that analyze nouns, dependency arcs, and separated names in the documentation,
with their findings written into the text state. The subsequent PhraseAgent builds on
this state and uses its own informant to extract compound noun structures, generating
noun mappings that extend the text state for further processing.

This modular design ensures that detailed analyses remain within the informants, while
the agent serves as the integration point. As a result, extending the TLR approach to
support new entity types, such as dataflow elements, can be achieved by adding new
informants or replacing agents.
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Initial extAgent
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Figure 2.2: Text Extraction

2.2 Palladio Component Model (PCM)

The Palladio Component Model (PCM) is a domain-specific modeling language designed
for early performance predictions of component-based software architectures [4, 35]. It
allows software architects to assess response times, throughput, and resource utilization
before implementation, helping to identify bottlenecks and optimize architecture. To
do this, PCM provides different modeling capabilities offering different views on the
system, like the component repositories, service effect specification, assembly diagrams,
resource environments, allocation diagrams, and usage models.

In the component repository, different entities can be specified, like interfaces, data,
types, and components. Part of the components are service effect specifications (SEFF).
These make it possible to describe resource demands and calls to required services,
provided by other components. In those calls, the input and output of the actions can
be specified, making it possible to describe the state of input and output variables.
Different instances of the components can be composed into a system architecture.
Those instances can be modeled in an assembly model. This model describes how the
components are assembled by specifying which required interfaces are provided by
which component. Through this, external calls to interface methods in the SEFFS can
be delegated to specific components.

The usage model describes interactions with the system. To do so, different usage sce-
narios are modeled between actors and the system’s provided services. These provide
entry points of interaction with the system where parameters can be specified in the
service calls. In order to describe this view on the system, the usage model references
parts described in the assembly model and the repository.

In the resource environment, different component instances can be allocated to re-
sources. Those resources can represent different physical locations. By combining these
various model types, a wide range of performance and reliability analyses, including
data flow analysis, can be supported.
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2.3 Dataflow Analysis

Data Flow Analysis Framework (DFA) is an approach that enables automatic analysis
of dataflow from architecture models, proposed by Boltz et al. [5]. During the DFA
dataflows are extracted from the architecture models. These derived dataflows can
then be used for analyses regarding different specified constraints that the system has
to meet. An example of such a constraint is shown in Requirement 39 of the EVerest
specification (see Figure 2.3). It states that sensitive information, such as tokens or
payment data transferred to cloud systems, must not be written into logs stored on the
charging station. This constraint can be described as a forbidden flow from the data
entities Token or Payment Info to the node Logs. The DFA then can check whether the
model align with the specified constraint.

Central part of the DFA is the Data Flow Diagram (DFD). The DFD metamodel that is
used aligns with the unified DFD notation proposed by Seiferman et al. [37], which can
be represented by transpose flow graphs (TFG). Each graph is made up of nodes, which
are connected through flows of data. Characteristics of nodes and data are described by
labels specified in the Data Dictionary, which can be referenced from the PCM models.
The extraction of the flow graph from PCM models requires iteration through different
models. In this process, references to elements from other model types have to be
resolved. The entry point for each flow is the usage scenario in the usage model.

2.4 EVerest

EVerest [41] is an open-source framework for charging applications with loosely cou-
pled modules. Different charging standards and usage scenarios can be supported by
configuring the modules, depending on concrete needs. For example, a public charging
station that provides plug and charge requires different modules for the authentication
and protocols to communicate with the car, than a simple wall charger at home

The EVerest modules communicate with each other through the Message Queueing

Token \" Payment Info —— Logs

Figure 2.3: Dataflow Constraint Requirement 39
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Telemetry Transport (MQTT) protocol. Modules implement different parts that are
necessary for EV charging, e.g., hardware drivers, protocols, and authentication. Addi-
tionally, EVerest specific tools are provided, like an admin panel to choose and configure
used modules.

In order to support as many usage scenarios as possible, the number of modules is
relatively high, with 29 modules. These modules are modeled in PCM as components,
containing 143 SEFFs in total. Prior to this work, a first modeling effort was done, as
other model types besides the component repository have been created, in an effort to
model the EVerest system. The models have been created based on available require-
ments and documentation, and from reverse-engineering the source code.

As part of the master’s thesis of Marettek [26], 93 design-level security requirements
have been elicited as a result of questionnaires and interviews with EVerest software de-
velopers. Based on these requirements, as part of a practical course, a dataflow analysis
for EVerest has been conducted. Out of 93 requirements, 19 held descriptions relevant
to the dataflow analysis regarding constraints for the dataflows. These constraints are
described in natural language in the requirements and had to be formalized using a
Domain Specific Language (DSL) to check for dataflow violations. Different patterns
were identified that generalize the different constraints, which helps with the reusability
of the formalization. Those patterns contain different elements. For example, specific
data with status, such as sensitivity, shall not flow to specific locations or components.
This means that requirements may also describe dataflows that are not represented
in PCM, but rather a state that should not occur. Also, some might require specific
actors to participate in order to be authorized. One pattern that describes that data
with a specific status should not flow to a defined set of components can be seen in
Figure 2.4.

In general, the dataflow constraints can be described by different elements of the
requirement text, such as data, actors, location, status of data and status of location.

status A = status —F component(s)

Figure 2.4: Dataflow constraint pattern
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Figure 2.5: SecLan system model [32]

2.5 SecLan Model

The SecLan model is a conceptual framework with the purpose of bridging the gap
between security design and implementation [32]. Through SecLan, it is possible to
understand and manage relationships between implementation-level security in the
form of code and security design, which is mostly specified through Domain-Specific
Languages (DSL).

At its core, the SecLan model introduces a meta-model consisting of elements, which
make up software systems such as components, entities, nodes, and data. This system
model is shown in Figure 2.5, containing each element type and their respective rela-
tionships between each other. Components represent functional building blocks that can
run on nodes, while entities represent actors or software objects, which are aggregated
by components. Data elements represent information that is exchanged in the system.
By explicitly modeling these elements and their interactions, for example as part of an
information flow, SecLan provides a foundation for understanding dataflows. In addition,
SecLan supports the modeling of states and activities, which allow the specification
of the conditions under which dataflows occur. In the system model it is defined, that
states are represented by data values.

Other sub-model that are part of the SecLan model are the security model, SecDSL
Description, and SecAnalyzer Description. The security model describes three fundamental
security concepts, security objectives, threats, and weaknesses. The SecDSL Description
contains descriptions of common elements of security DSLs. The SecAnalyzer Description
sub-model describes the security checks, which are possible through static analyzers.

10
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Part of the description covers the purpose of each check and the weaknesses it is
supposed to detect. The SecLan model itself defines how these concepts relate to each
other.

2.6 Large Language Models

Large Language Models (LLMs) are advanced Al systems designed to process and
generate human-like text [28]. LLMs have evolved from traditional statistical methods
to sophisticated neural network-based architectures. This progression includes pre-
trained language models (PLMs) and large-scale LLMs [28]. Their fast development is
driven by transformer architectures, enhanced computational power, and vast training
datasets [14]. Nowadays, transformer-based LLMs are used in various use cases of
natural language processing, including information retrieval tasks, chatbots, and coding
assistants [14].

Early models like T5 and GPT-3 have shown the ability to perform tasks without
fine-tuning, introducing the concepts of zero-shot and few-shot learning [6]. These
models undergo pre-training on massive datasets using self-supervised learning, in
order to efficiently process natural text sequences. Their performance can then be
further refined through fine-tuning on task-specific data, which is particularly relevant
for narrowly defined tasks. At the same time, LLMs show their ability for generalization
across tasks of different domains, excelling in applications involving natural language
text [28]. Prompts are used as input for the most commonly used LLMs. In practice,
prompts are used as primary input, which function as natural language instructions.
The design of such prompts plays an important role to reach the desired output. This
leads to different systematic design approaches referred to as prompt engineering.

Sahoo et al. present various prompt engineering techniques, which provide a structured
approach to guiding LLMs toward desired outputs [36]. Rather than modifying the
model’s core parameters, prompt engineering enhances accuracy by adjusting the
instruction text. The choice of technique depends on the specific use case, with methods
ranging from zero-shot and few-shot prompting to chain-of-thought prompting and
beyond.

A possible task where different prompting strategies can be applied would be classifying
whether a requirement is a security requirement.

The Zero-shot prompt is built as the base-prompt, where the LLM is asked directly:

11
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Prompt 1: Zero-Shot Prompt

Classify the following requirement as a security requirement or not
Requirement: “The system must log all failed login attempts.”
Answer with 'yes’ or 'no’

In a few-shot setting, additional examples are provided to guide the model. Those
examples establish the expected result format and additional context, which can improve
the accuracy of the model compared to zero-shot prompts [38].

Prompt 2: Few-Shot Prompt
Example 1: “The system must encrypt user passwords.”
Answer: yes

Example 2: “The application should support multiple languages”
Answer: no

Classify the following requirement as a security requirement or not:
Requirement: “The system must log all failed login attempts.”
Answer with 'yes’ or 'no’

Finally, this can be extended with chain-of-thought prompting, where the model is
encouraged to provide reasoning steps before answering.

Prompt 3: Chain-of-Thought Prompt

Classify the following requirement as a security requirement or not.

Let’s think step for step. Provide a short reason, on how you came to that
conclusion

Requirement: “The system must log all failed login attempts.”

Answer with reasoning + 'yes’ or ‘no’

The results achieved vary depending on the combination of prompting techniques
and the chosen model, and it is difficult to define a single optimal configuration that
performs similarly across all tasks [38]. Given the wide range of available techniques
and their possible combinations, effective prompt design often depends on the individual
developer. This highlights the need for a more systematic approach to crafting effective
prompts, ensuring consistency and efficiency in optimizing LLM performance.

12
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DSPY introduces a systematic approach to prompt generation by programmatically
specifying the given input, desired output, and task requirements [18]. This streamlines
the prompt engineering process and provides a good baseline, which can be adjusted
depending on desired results. Since traditional text-based prompts can yield varying
results depending on the input data or the specific LLM used, DSPY offers a tool-based
solution that enhances generalization across different LLM pipelines. By systematically
applying various prompt engineering techniques based on the task at hand, DSPY
improves consistency, adaptability, and efficiency in leveraging LLMs for diverse ap-
plications. DSPY also provides optimization of prompts when sample input data and
desired results are provided. This process refines the prompt structure to enhance
model performance while reducing the reliance on manual prompt design.

2.7 Evaluation Metrics

Standard metrics are applied to evaluate the classification task performance in this
thesis. Commonly used standard metrics are applied to evaluate the performance of
the classification tasks in this thesis. This enables comparability with different variants
used in this work and with other work. The central measures are precision, recall, and
their combinations into F1 and F2.

complemented by both micro- and macro-averaged variants. These metrics allow for a
balanced assessment across classes, which is crucial in the presence of class imbalance
that is typical for requirement texts.

Precision and Recall

TP denotes the number of true positives, FP the false positives, and FN the false
negatives. Precision P and Recall R are defined as:

TP

Pz (2.1)
TP + FP
TP
R=— . (2.2)
TP+ FN

The precision value measures the proportion of correctly identified items compared
to all positive identified items. On the other hand, Recall measures the proportion
of correctly identified items among all relevant items, including the number of items
missed out of the FP. In trace link generation tasks, recall is particularly important, since
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it measures how many of the relevant links have been retrieved. In practice, filtering
out irrelevant trace links is preferable to manually searching for missing ones.

F-Measure

To combine Precision and Recall into a single score, the Fg-measure is used, defined
as:

P-R
Fe=(1+p) —-—. 2.3
=) g (23
Commonly used is the harmonic mean F;, where f§ = 1:
P-R
F=2. . 2.4
! P+R 24)

For tasks where recall shall be weighted more than precision,  can be increased. In
this thesis, the F, score is also reported (f = 2):

F=5. LR (2.5)
27 4. P+R '

This formulation weights recall twice as high as precision, which reflects the importance
of identifying as many relevant entities and links as possible.

Micro and Macro Averaging

Two aggregation strategies can be applied to measure performance across different
runs or across element types: micro-averaging and macro-averaging.

Micro-averaging: Metrics are calculated globally by summing over all classes:
2 TP, 2 TP,

P . = R : = 26
Micro-averaged F then becomes:
P - R._.
Fﬁ,micro — (1 + ﬁZ) X micro micro (2.7)

ﬁz - P, micro + Rmicro

Results of the micro-averaged measures are dominated by frequent classes and reflects
overall correctness across the dataset.
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2.7 Evaluation Metrics

Macro-averaging: Metrics are computed per class and then averaged:

Pracro = = Pi,  Rmacro = = R;, (2-8)
N i=1 N i=1
1 N
Fﬁ,macro = N ; Fﬂ,i~ (2'9)

Here N denotes the number of types or folds. This results in macro-averaging, weighting
all types or runs equally.
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3 Related Works

In this chapter, the research related to trace link recovery (TLR) of dataflows from
requirements is discussed. The first part reviews existing approaches for named entity
recognition (NER), as this thesis uses dataflow-related entity extraction as the base for
creating tracelinks to dataflows. The second part discusses approaches for trace link
recovery, contrasting traditional information retrieval techniques with recent advances
based on large language models (LLMs). This chapter gives an overview of the state of
the art and highlights the research gap addressed in this work.

3.1 Named Entity Recognition in Requirements

The literature review by Kolahdouz-Rahimi et al.[20] shows that heuristic NLP methods
are the most commonly used for requirements formalization. Maltempo et al. [25], for
example, attempt to extract multi-word named entities from requirement texts using
NLP techniques and heuristic rules to derive a hierarchical model. Their approach
relies on processing kernel sentences, which must follow a simplified sentence format.
However, since natural language requirements vary depending on the author, system,
or organization, this thesis aims to classify the elements within these requirements
without requiring prior structuring. This ensures transferability of the results to other
projects, which most commonly utilize natural language requirements.

Pakhale [31] provides a general overview of named entity recognition (NER) approaches,
where different methods are presented ranging from early rule-based systems to modern
transformer-based architectures, including domain-specific models such as ViBERTgrid
and BioBERT. While ViBERTgrid [23] addresses specific challenges of financial and
legal documents, BioBERT [22] specializes in retrieving information from biomedical
language. Similar to these approaches, Ray et al. [40] propose an approach for the
NER in aerospace requirements, aeroBERT-NER. Through the fine-tuning of BERT,
a specialized model is created that can handle aerospace-specific terminology. This
required a annotated aerospace corpus, containing 1432 requirements.

While specialized models achieve superior performance compared to LLMs that are fine-
tuned for general-domain tasks [40], their adaptation to specific domains often requires
extensive fine-tuning or hybrid methods, which is difficult to implement when only
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limited annotated data is available. This directly relates to this thesis, as security-related
requirement engineering is also a domain with scarcely labeled data.

The work of Malik et al. [24] focuses on requirements documents and proposes a
supervised learning approach for extracting requirement-specific entities. They de-
fine ten entity categories that are contained in software specification texts (e.g., AP
GUI, HARDWARE, PLATFORM). As the supervised-learning approaches used require
annotated data, requirements had to be manually annotated with the defined entities
as labels. Those requirements were collected from DOORS, a requirement management
tool created by IBM. In this process, more than 3000 sentences were extracted from the
requirements and annotated. Using models such as ML-CRF, C-MEM, and BiLSTM-CREF,
they demonstrate that traditional machine learning methods can capture recurring pat-
terns in requirements texts. However, their defined entity set differs significantly from
the SecLan elements used in this thesis, and the approach relies on a large manually
annotated dataset, which is not available for the SecLan entities. This highlights the
need for alternative approaches that can operate effectively without extensive labeled
data.

In contrast, Marettek proposes an approach for NER in her master’s thesis [26], where
general-use pre-trained models are utilized. Her approach classifies different SecLan
elements from elicitated EVerest requirements using GPT. The results indicate that
fine-tuning GPT 3.5 turbo leads to more accurate classification compared to prompt
engineering with GPT 4, suggesting that fine-tuned models are better suited for precise
extraction tasks. For the evaluation, a 5-fold cross-validation was performed, where
four folds were used for training and one for evaluation. In addition, ten percent of the
training data was withheld from fine-tuning, resulting in approximately 67 training
samples per fold. Previous work, such as Oliver et al. [29], suggests that fine-tuning
becomes more reliable with around 200 labeled examples. While fine-tuning on a smaller
dataset can still yield acceptable results, it increases the risk of reducing generalization
ability, since the limited training data has a high influence on the model. Consequently,
the transferability of the results to other projects cannot be guaranteed. For this reason,
the focus of this work lies on zero- to few-shot prompting, utilizing chain-of-thought
prompting for entity classification in natural language requirements.

3.2 Trace Link Recovery

Trace Link Recovery (TLR) aims to identify and maintain relationships between different
software artifacts [7]. Before the emergence of large language models (LLMs), most
semi-automated approaches were based on Information Retrieval (IR) techniques [7].
Classical IR methods such as Vector Space Models (VSM) [1], Latent Semantic Indexing
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(LSI) [2], or Latent Dirichlet Allocation (LDA) [3] rely on textual similarity and were
widely applied to link requirements with design or code artifacts. LSI and LDA are
extensions of VSM, where dependencies between terms and documents are considered,
to represent latent structures. TAROT [10] proposes the use of consensual biterms
extracted from requirement texts. These biterms can be used to refine the calculation
of IR values, improving the recovery of trace links between software artifacts. While
classical IR-based approaches can produce effective results in generic requirement-to-
code TLR, they are limited due to possible term mismatches through different software
artifacts [7]. To bridge this gap, the usage of LLMs could be beneficial in order to find
links between elements that do not have consistent naming.

Recent research therefore has explored LLMs for trace link recovery for various software
artifacts. Hassine [12] proposes an approach to recover trace links between security
requirements and Goal models. GPT-3.5 turbo was used to create links between re-
quirements and security-related goals. This method was evaluated on a dataset of 42
requirements for a virtual interior designer application and achieved promising results,
with an F; score of 0.879.

To address the limited input size of LLMs, which makes it infeasible to provide the
entire project context, Hey et al. [13] propose the usage of Retrieval-Augmented
Generation (RAG) to retrieve the most likely candidate links. Their work embeds
requirements into a vector representation. For each source requirement, the most
similar target requirements are retrieved, and the requirement pairs are sent to a LLM
for link classification. The best results were achieved with chain-of-thought prompting
using GPT-40. This approach can also be extended to a broader range of artifacts,
including source code, requirements, architecture documentation, and architecture
models. Fuchs et al. [9] transform these artifacts into textual representations first,
which can be used for RAG. Evaluation of the SAD to SAM TLR showed that chain-
of-thought prompting outperformed the keep-it-simple-stupid (KISS) strategy. The
KISS prompt is similar to a simple zero-shot prompt. It could also be observed that
the average performance of the classification decreased when multiple features were
combined, for example, when including interface and usage information in addition to
component names. While the approach was effective, the baseline approach ArDoCo
was not outperformed, achieving F; = 0.458 and F, = 0.589.

LLMs can be used in various use cases in the TLR context, like Fuchs et al. [8] proposed
the usage of LLMs to create a simplified SAM to bridge the gap between source code and
SAD. The LLM is used to extract component names from SAD. This approach produced
similar results to state-of-the-art TLR approaches using manually created SAM and
outperforms TLR approaches that don’t require SAM. In this work closed source LLM
from OpenAi performed better than Llama-based models.
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These works show the possibilities in automated trace link recovery using LLMs. How-
ever, existing work primarily focuses on linking requirements to other textual artifacts
(e.g., other requirements, source code, or goals) or on extracting structural entities such
as component names, while software architecture document to software architecture
model TLR is mostly focused on components. Since components are part of dataflow
entities, existing TLR approaches like SWATTR provide a valuable foundation for the
tracing of dataflows. This thesis aims to apply LLM-based methods to identify and link
additional dataflow-related elements besides components described in requirements to
their corresponding architectural model elements.
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A reliable gold standard dataset is needed to evaluate named entity extraction of dataflow
entities from requirements and for the recovery of trace links. Without such a dataset,
the quality of extracted entities or the correctness of generated trace links cannot be
measured in a meaningful way, ensuring transferability to other projects. This labeled
data is also useful for training purposes, since some approaches in named entitity
recognition benefit from annotated examples.

A suitable dataset for the use in this thesis has to fulfill three aspects. First, it must be
aligned with an existing software architecture model (SAM), so that trace links can later
be evaluated against a concrete target. Second, the underlying requirements need to
include security-related topics, especially dataflows, since these are central to the focus
of this thesis. Third, the entities labeled in the requirements have to match the SecLan
element types, so that the dataset is consistent with the conceptual model introduced
in section 2.5.

As there is a lack of publicly available labeled datasets that would match the needs
of this thesis, such a gold standard has to be created beforehand. The EVerest project
is chosen as the basis for creating the gold standard. It provides a set of elicited
requirements that explicitly include security-related aspects, which is valuable since
such requirements are usually not made publicly available. These have been elicited
together with Pionix developers as part of Marettek’s master’s thesis [26]. In addition,
a PCM model of EVerest has been created, with a focus on describing dataflows of
the system. This makes EVerest a suitable candidate, as it combines the availability of
security-related requirements with a SAM that can be used as a target for trace link
evaluation. Additionally, since EVerest is an open source project, the source code is
available. This not only enables future extensions of TLR towards the implementation
level, but also supports further research that requires access to security-related context
beyond requirements and architecture.

The gold standard was created by the author of this thesis, together with two other
annotators, in order to reach an inter-annotator agreement. For this, the requirements
must be labeled separately, and differences must be discussed and resolved. Inter-
annotator agreements are supposed to increase the overall quality of the gold standard,
handle ambiguities in labeling, and create a more objective labeled data set.
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4.1 Annotation Process

The annotation process followed a defined guideline to ensure consistency across
annotators. The main objective was to identify entities in natural language requirements
that correspond to SecLan elements.

A key concept in the annotation is the acceptance window, defined by a long sequence and
a short sequence. The long sequence represents the longest acceptable term associated
with a label. Those terms may include additional information or articles describing the
element. The corresponding long sequence is labeled again if the same element occurs
multiple times within a requirement.

A short sequence refers to the minimal required term that still contains enough in-
formation to understand the meaning of the labeled element. As an example in the
requirement text "This can be ensured by the EvseSecurity module and by" (ID 28), a
component was labeled with the long sequence "the EvseSecurity module" and short
sequence "EvseSecurity".

Another concept used is references and coreferences. References are used when the text
does not explicitly mention a concrete element but refers to it in a more general way,
often by grouping multiple elements together. For instance, phrases like "the system"
or "all critical modules" are annotated as references, since they describe several compo-
nents without naming them individually. Coreferences are interchangeable names or
pronouns in the text that refer back to previously mentioned components. They must
point to either references or short sequences of components, such as in “these modules”
or when using an acronym after the full name was introduced.

The labeling was done by three annotators with computer science backgrounds: one
Bachelor student, one Master student, and one PhD researcher. The initial annotation of
the requirements was performed independently by the annotators. Afterwards, all three
annotators met to review the results, discuss disagreements, and resolve ambiguities. In
cases where not all three annotators reached the same conclusion, even after reviewing
the annotation guideline, a majority vote decided how the disagreement should be
solved. Through this process of inter-annotator agreement, a consolidated version of
the dataset was created, which leads to the final gold standard used in this thesis.

4.2 Annotation of SecLan Elements

The annotation guideline used is based on the definitions of SecLan elements (cf.
section 2.5). During annotation, several ambiguities and corner cases were discovered,
which were addressed by extending the definitions with concrete examples. In the
following, the annotation procedure and additional fields for each element type are
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described in detail, as part of the extended annotation guideline. For each element type,
the original definition as proposed by Peldszus et al. [32] is presented, followed by the
extensions to the definitions made during the annotation process, the annotation fields
used, and an example.

Data — SecLan - Definition

"A central element type in software security is Data, which conveys information
through a collection of values." [32]

The data definition is extended to include composed data objects such as personal
information, addresses, or credit card data. Certificates are also explicitly added, since
they occur in EVerest requirements and are particularly relevant in security contexts.
Each data element is annotated with a long and a short sequence. The long sequence
covers the full span of the requirement text, while the short sequence reduces it to the
minimal meaningful term. Both sequences together form the acceptance window for
evaluation, which ensures that different phrasings are handled consistently.

Running Example — Data Annotations

“The EvseManager component on the charging station must verify
authentication tokensprovided by the CSMS, log invalid tokens in the sys-

tem log, and forward valid 1okens to the Auth module for further processing.”

Legend: long sequence  short sequence

Figure 4.1: Example with annotated data labels

Entity — SecLan - Definition

"Data can be held by Entities, which can be a physical actor, software object, or
external system such as a database." [32].

The definition of entity was expanded to explicitly include software libraries, protocols,
external systems, and physical actors. Entities were annotated whenever the text
referred to elements that can hold states or expose interfaces, but are not independently
deployable architectural units.

This distinction ensured that protocols were annotated as entities (e.g., "OCPP proto-
col"), while modules implementing these protocols remained annotated as components
(e.g., "OCPP module"). Similarly, libraries such as "libocpp" or "libevse" were treated as
entities rather than components.
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In the example shown in Figure 4.2, the phrase “CSMS” (Charging Station Management
System) was annotated as an entity, since it represents an external system that interacts
with internal components. Here, the long sequence was “the CSMS”, while the short
sequence was simply “CSMS”. This complements the component annotations "Charg-
ingManager" and "Auth module", and together they form the basis for the annotated
information flows.

Running Example — Entity Annotations

“The EvseManager component on the charging station must verify authentication
tokens provided by the , log invalid tokens in the system log, and forward
valid tokens to the Auth module for further processing.”

Legend: long sequence

Figure 4.2: Example with annotated entity labels

Activity — SecLan - Definition

"For realizing a system’s behavior, an Entity performs an Activity which processes
Data or communicates with other Activities" [32].

Activities may also be realized as manual actions carried out by system actors such
as users, described in behavioral models, or implemented as functions at the source
code level. Activities were extended to cover manual user actions and software-related
functions. Updates and described functions were explicitly included as valid activities,
even if not tied to a concrete implementation. In addition, statements about ownership
relations of data or entities (e.g., “the module stores certificates”) were also annotated
as activities.

Not every relation in the text was considered an activity. Statements that only express
compliance, fulfillment of requirements, or general design claims (e.g., “complies to
ISO 151187, “fulfills all requirements from ...”) were not annotated as activities, since
they describe design context rather than an executable action. Similarly, ambiguous
formulations such as “This affects system parts ...” were only annotated if a concrete
activity could be identified.

Each annotated activity containes additional fields to capture its context. These fields
describe the actor performing the activity, the activity itself, the objects involved, further
additions, possible negations, references to corresponding model identifiers, and optional
notes. This ensured that activities were annotated not only as textual spans but also as
structured elements that can be mapped to architecture models.
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Special care was required when handling negations (e.g., “must not forward tokens”).
In such cases, the negation was explicitly stored in the activity annotation. In contrast,
statements about the absence or presence of elements (e.g., “the charger has no certifi-
cate”) were considered states rather than activities. This distinction was refined during
the annotation process.

In the running example in Figure 4.3, besides “verify”, the verbs “log” and “forward” can
also be annotated as activities. These fields don’t have their own acceptance window, as
they refer to other annotated elements. For example the object "authentication tokens"
refers to the data element in as seen in Figure 4.1.

Running Example - Activity Annotations

“The EvseManager component on the charging station must verify

authentication tokens , log invalid tokens in the
system log, and forward valid tokens to the Auth module for further processing.”

Legend: Actor  Activity = Object

Figure 4.3: Example with annotated activity labels and color-coded fields

State — Definition

"Entities and Activities can have a State which is generally represented by Data."
[32]

For state, the guideline was refined to also include the state of data and node. In
addition, technical execution states (e.g., a crashed server) and specific configurations
were considered valid states, provided they were explicitly mentioned in the requirement
text.

States are generally understood as attributes of an object or as roles assigned to an actor.
They can further describe properties of elements and provide additional attributes or
circumstances that specify them in more depth. States can also describe restrictions or
limitations, for example by narrowing the validity of data, entities, or activities.

Not every descriptive relation was considered a state. Statements describing software
design or architectural relations to standards (e.g., “A implements B”, “C is included in
process D”, “E is defined in ISO 15118”) were not annotated as states, since they capture
design details rather than runtime conditions.

States restrict the interpretation of elements and are essential for determining the
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system’s behavior. Each state has to refer to an object, that can be an activity, entity,
data, component or node. In the running example illustrated in Figure 4.4, the adjectives
valid and invalid describe the data object tokens and were therefore annotated as state.
The states always refer to the short sequence of a object.

Running Example - State Annotations

“The EvseManager component on the charging station must verify authentication

tokens provided by the CSMS, log tokens in the system log, and forward

tokens to the Auth module for further processing.”

Legend: Object

Figure 4.4: Example with annotated state labels

Control Flow — Definition

"The execution of Activities is orchestrated by Control Flow."[32]

A typical pattern for control flows is a conditional statement such as “if X happens,
Y must be executed”. Only cases with a direct relation between initiator (source) and
recipient (target) were annotated.

Each annotated control flow contains fields for the action verb, the source initiating the
flow, and the target receiving it. Both source and target could be components, entities, or
nodes. In addition, references were annotated in cases where the text described a control
flow but did not explicitly mention either source or target (e.g., “in this case, processing
must stop”). Coreferences were also considered, for example when a subsequent sentence
referred back to an already annotated control flow with phrases such as “this action”.

In the running example illustrated in Figure 4.5, the source "EvseManager" validates
tokens and forwards them to the target "Auth module" for "further processing" (action).
Similar to the state, the acceptance window for the different fields is defined by the
acceptance windows of the prior labeled elements.

Information Flow — Definition

"When Data is exchanged between Activities (indirectly also between Entities,
i.e., receiving data can be seen as an Activity), this can form an Information Flow"
[32].
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Running Example — Control Flow Annotations

“The EvseManager component on the charging station must verify authentication

tokens provided by the CSMS, log invalid tokens in the system log, and forward
valid tokens to the for further processing.”

Legend: Source Action

Figure 4.5: Example with annotated control flow relation

The guideline was extended to define, that storing or persisting data within the same
component is separated from information Flows, unless the data was explicitly transmit-
ted to another element. This extension ensures that information flows are distinguished
from data states. Purely descriptive access control information, such as stating that a
component has permission to read or write, was not annotated as an information flow,
since no concrete transfer of data was described. Furthermore, at least one type of data
had to be explicitly mentioned in order for a information flow to be annotated.

The labeling of contained information flows was an important factor in the creation of
the gold standard, as these were needed for the later evaluation. Each annotated flow
contains additional fields to describe the source, target, the transmitted data, and the
form of transmission.

In the running example, two information flows can be annotated. The first flow, il-
lustrated in Figure 4.6, originates from the entity "CSMS" (source) and is directed to
the component "EvseManager" (target), transmitting the data element "authentication
tokens". The second flow goes from the component "EvseManager" (source) to the
component "Auth module" (target), transmitting the data element "valid tokens". The
verbs "provided" and "forward" were annotated as the form of transmission.

The acceptance window for dataflow is defined by the acceptance windows of the prior
labeled elements.

Component — SecLan - Definition

"Multiple software Entities can be combined to a Component that encapsulates
specific functionality."[32].

For component, the guideline is extended to clarify that architectural elements such as
subsystems, frameworks, or architectural layers, can also be annotated as components,
as long as they can be independently deployed.
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Running Example - Information Flow Annotations

“The EvseManager component on the charging station must verify

authentication tokens provided by the CS5MS, log invalid tokens in the
system log, and forward valid tokens to the Auth module for further processing.”

Legend: Source Target Data  Transmission

r
\

Figure 4.6: Example with annotated information flow relations

Mentions that do not explicitly refer to a component are marked as references, which
is also the case when multiple components are addressed collectively without naming
them separately. If both a general term and specific component names are provided,
only the specific mentions are annotated, while the common term is ignored. References
to protocols (e.g., OCPP protocol) are not mapped to components. Similarly, libraries
such as libocpp or libevse are excluded, since they do not represent deployable units.
Only system-internal components are annotated, while external systems such as the
MQTT broker, trusted platform module, or CSMS are annotated as entities.

Running Example - Component Annotations

“The EvseManagercomponent on the charging station must verify authentication
tokens provided by the CSMS, log invalid tokens in the system log, and forward
valid tokens to the Auth module for further processing.”

Legend: long sequence short sequence

Node - SecLan — Definition

"A Component can be deployed on a Node, which is a physical device executing
software."[32]

In contrast to components, which represent logical software units, nodes represent the
underlying physical infrastructure. Annotating nodes is important to capture the system
deployment view and to connect software architecture with its execution environment.
Nodes include both complete physical devices and their physical interfaces. For example,
“ethernet ports” was annotated as a node. This illustrates that not only large devices
like servers but also ports and network interfaces are considered nodes when explicitly
mentioned in the requirements.



4.2 Annotation of SecLan Elements

As with other categories, both long sequences and short sequences are annotated to
identify the acceptance window of a node. As illustrated in the Figure 4.7, the "charging
station" would be a node, as the component "EvseManager" is probably deployed on it.

Running Example — Node Annotations

“The EvseManager component on the must verify authentication
tokens provided by the CSMS, log invalid tokens in the system log, and forward
valid tokens to the Auth module for further processing.”

Legend: long sequence

Figure 4.7: Example with annotated node label

Connection - SecLan — Definition

"Communication between Activities or Entities is established either through
physical Connections between Nodes or internally within a component" [32]

Each annotated connection contained additional fields to describe its role in the system.
The source identifies the node, entity, or component that initiates the connection, while
the target refers to the element receiving the connection. The field via captures the
physical connector or medium over which the source and target are linked (e.g., ethernet
port, USB, local socket). This structured annotation ensures that connections can be
consistently aligned with both nodes and information flows.

Although explicit mentions of connections were relatively rare in the EVerest require-
ments, they play an important role in linking nodes and supporting the traceability of
information flows. Figure 4.8 shows an example of a sentence with a connection. In
this case, the node "charging station" is annotated as the source and the entity "CSMS"
is annotated as the target. The annotated elements were traced to an existing EVerest
software architecture model, if possible. For this, the element names were manually
compared to elements of the PCM to find respective ModelIDs. In the PCM component
repository, we looked for components and data model elements, while for nodes, the
resource environment was searched. Supposedly, a module is mentioned in the require-
ments, but only its interfaces exist in the architecture model. In that case, it was still
traced to the closest component associated with the interface.
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Example — Connection Annotations

“The charging station maintains active connections to the in order to ex-

change charging session data.”

Legend: Source via

Figure 4.8: Example with annotated connection relation

4.3 Resulting Gold Standard

The annotation results for each SecLan element type are merged for the individual
requirements, so that for each requirement, a single JSON file exists that contains all
annotated element types in one place. The resulting dataset represents the gold standard
used in this thesis.

The overall JSON structure is organized into two parts:

« Requirement metadata, which stores attributes such as requirement identifier,
text, author, security objective, and a confidence score. These were taken from
the original elicited requirements [26].

« Element annotations, which are grouped by SecLan element types (e.g., com-
ponent, data, state). Each group contains the specific text sections, where the
elements are described, as well as additional properties needed to describe the
element as specified in section 4.2.

The resulting gold standard dataset contains labeled SecLan elements for 93 require-
ments of the EVerest project. The dataset contains 1261 annotated elements across
all types: component, data, state, activity, entity, node, information flow, control flow,
and connection. Table 4.1 shows the distribution of annotations per category. While
most of the components could be mapped to a specific architecture element (86 out of
97), this task was more difficult for data, as data elements are often more abstract and
their names often don’t match a specific datatype, making them hard to trace. The high
number of annotated states can be explained by their role in describing nearly every
other element type. States are used to qualify or restrict components, entities, activities,
and data elements, whereas only control flows and information flows are typically not
associated with explicit states. As a result, states occur in almost every requirement,
making them by far the most frequent annotation category in the dataset.

In total, 197 annotations were marked as references. These are cases where the re-
quirement text did not explicitly mention a concrete element but only referred to it

30



4.3 Resulting Gold Standard

Element Type Total With Modelld References

Components 97 86 93
Data 67 37 34
Nodes 38 22 5
Entities 109 21 18
States 589 - 6
Connections 34 - 2
Dataflows 36 - 15
Activities 229 - 10
ControlFlows 62 - 14
Total 1261 126 197

Table 4.1: Distribution of annotated elements in the gold standard.

indirectly (e.g., “the system”, “these modules”). References often occur for components,
which shows that architecture is often described in unspecific terms. The presence of
references shows the inaccuracies that come with natural language requirements. Since
references cannot be mapped directly to architectural elements, they require contextual
interpretation.

Table 4.2 shows in how many of the 93 requirements each element type are labeled.
States appear in 90 requirements, reflecting their importance in describing conditions
for data and activities. Activities are annotated in 84 requirements, while components
occur in 52 requirements. In contrast, connections and dataflows are much less frequent,
as explicit descriptions of communication channels or complete end-to-end flows are
rare. Dataflows that were fully specified with target, source, and data were relatively
rare (18), as often either target or source was not explicitly mentioned in the requirement.

Element Type Requirements with at least 1 Annotation

Components 52
Data 34
Nodes 27
Entities 57
States 90
Connections 20
Dataflows 24
Activities 84
ControlFlows 34

Table 4.2: Coverage of annotated elements across requirements.
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The resulting gold standard contains annotations for all SecLan element types and
therefore provides a good base for named entity recognition. The number of explicitly
annotated dataflows is relatively low, which can make classification for this type more
difficult. At the same time, many components and data elements could already be
linked to the architecture model through model identifiers, which at least enables the
evaluation and training of trace link recovery for these types.

4.4 Threats to Validity

Several threats to validity have to be considered for the created gold standard. First,
a potential bias in labeling may arise from prior work with the EVerest project, since
the annotators already had expectations regarding existing components. This prior
knowledge could have influenced labeling decisions, although the effect was mitigated
by using multiple annotators and resolving disagreements through discussion.

Second, mapping the annotated elements to the SAM could only be performed on a
best-effort basis. In many cases, no model identifier could be assigned to an annotation.
This can either occur because a corresponding model element does not exist, or because
the element exists in the model but was not explicitly recognized during annotation.
As a result, traceability coverage may be incomplete. On the other hand, this limitation
also creates an opportunity to detect inconsistencies in the SAM, e.g., not modeled
software architecture elements.

Third, a degree of subjectivity remains, particularly for the annotation of short sequences.
Even though the acceptance window reduced this risk, annotators occasionally differed
in their judgment of the minimal sufficient span. Similarly, the initial annotation
guideline was not fully specified in all aspects, which required clarifications and iterative
refinements of the guideline during annotation. While this increased consistency
over time, it still reflects a potential source of variation in early annotations. The
limited number of annotators (one Bachelor student, one Master student, and one PhD
researcher) also constrains the diversity of perspectives. Although this group provided a
useful balance of experience, it still leaves the possibility that alternative interpretations
may have been overlooked.

Finally, the representativity of the annotated classes is limited by the dataset itself. The
EVerest requirements were elicited in a real-world project and so naturally reflect this
system. Consequently, some SecLan element types are more frequently represented
than others, which affects the balance of the dataset. Moreover, the strong focus on a
single project domain limits the external validity of the gold standard. The evaluation
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results derived from this dataset cannot be directly generalized to other domains of
requirements engineering without further validation on different datasets.
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5 Extraction and Tracing of Dataflow
entities from Requirements

Requirements often describe how data is exchanged between different elements of a
system, for example, between components or physical devices. Such descriptions offer
an opportunity to extend traceability beyond structural elements and include dataflows
as trace artifacts. Since requirements can contain descriptions of how data is transmit-
ted between system elements, they provide an opportunity to extend traceability to
dataflows. This chapter introduces the approach for classifying dataflow entities in
requirements, which forms the foundation for establishing trace links between software
architecture documents (SAD) and SAM. The classification was integrated into the
existing SWATTR approach (cf. section 2.1). This chapter describes which entities are
classified for dataflow traceability, the strategy used to perform this classification, and
the extensions required to integrate it into the existing SWATTR framework. Further-
more, it outlines the role of large language models (LLMs) in the classification process
and compares different prompting strategies to evaluate their effectiveness.

5.1 Traceable Dataflow Entities

Dataflow entities are combinations of other entities: nodes that share data across edges
along them. For the dataflow analysis on PCM (cf. section 2.3), dataflows are represented
as dataflow graphs. As dataflows have no explicit representation in PCM, they have to
be derived from usage scenarios, system behavior captured in SEFFs and deployment
information. In PCM, each action, such as external calls between components, start
and end nodes, or internal data processing, is mapped to a vertex in the graph Boltz et
al. [5]. The incoming and outgoing pins of these vertices correspond to the transmitted
data types. The dataflows derived from PCM contain components as processing and
interaction units, nodes as the execution context for these components, entities represent-
ing external participants, protocols, or actors, and data as the information exchanged
along the edges. The nodes are derived from the resource environment model, which
describes the deployment of components on physical nodes(c.f. section 2.2). These make
it possible to group components by their execution context. This is particularly relevant
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5 Extraction and Tracing of Dataflow entities from Requirements

when dataflow constraints describe dataflows at the level of physical devices rather than
individual software components. In the following, the term dataflow-related elements is
used for components, nodes, entities, and data. For tracing these, we use their respective
SecLan elements from the gold standard. Another element type from SecLan that is
relevant are information flows. These information flows could describe small subsec-
tions of the dataflow graph in PCM, consisting of a minimal graph between a source
and a target, which exchange data. For this thesis, instead of the term information
flow, dataflow is used, referring to the Seclan element. Besides these elements, SecLan
also describes other elements that occur in security-related requirements. However,
not all are relevant for dataflows, and thus, they are neglected in the tracing approach.
For example, SecLan states are not further used, although they are partly represented
in dataflow graphs through annotated characteristics (e.g., confidentiality labels or
encryption states). Although states provide additional information about underlying
elements, like data or components. They are not used as trace artifacts, as they are not
modeled separately from the software model artifacts that they describe. Similarly,
SecLan elements like activities, or control flows are also excluded.

In summary, while the SecLan Model describes an extensive set of entity types that can
be annotated in security-related requirements, not all of these are equally relevant for
dataflow trace link recovery.

The selection of dataflow-related elements, which can be traced to PCM architecture
elements, is illustrated in the example Figure 5.1. Several elements can be classified and
traced in this requirement. Components are the "EvseManager" and the "Auth module’,
which are both represented as components in the EVerest repository model. The entity
"CSMS", which represents an external actor, is modeled in the EVerest PCM as a resource
container. The mentioned node is the "charging station", providing the deployment
context, which can also be traced to a resource container. Finally, the data exchanged are
the "authentication tokens", which can be matched to the "Token" datatype, contained
in the repository model. The adjectives "valid" or "invalid" correspond to the state of
the tokens. Although they can be described in SEFFES by setting the state of a variable,
they can not be used as trace artifacts by themselves. Rather, they further describe the
token, but they don’t identify it, making it part of the element, like by "authentication".
Similarly, the verb "forwards" describes an activity, which explains system behavior
but is not required for structural trace links. The dataflow between "EvseManager"
and the "Auth module", sending "authentication tokens", can be traced by its contained
elements, as each of the elements can be traced by itself.
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5.2 Entity Extraction

Example — Dataflow-related Elements

“The EvseManager component on the charging station must verify

authentication tokens provided by the , log invalid tokens in the

system log, and forward valid tokens to the Auth module for further processing.”

Legend: Component Data  Node

Figure 5.1: Example with annotated dataflow-related elements

5.2 Entity Extraction

The following section describes the approach for the extraction of dataflow entities
from requirements. Through this approach, this thesis aims to replace the in SWATTR
used heuristics focused on the extraction of components from architecture documents,
with a method to extract dataflow-related entities. For this step, LLMs are utilized to
extract phrases and classify them by element type. This approach makes use of the
semantic understanding of LLMs to detect dataflow-related elements in natural language
requirements without requiring intermediate preprocessing steps. The extraction of
entities is done for each requirement separately, which means that the LLM does not
carry knowledge of other requirements. When giving out extraction results, the model
has to adhere to a predefined format to make further processing possible through
parsing. This format is determined by the classification mode used.

Two classification modes are implemented and compared to each other. Named entity
recognition from natural language text can be approached as a set of independent
classification tasks or as a single joint task where all entity types are identified. Both
alternatives offer different advantages, so evaluating them side by side provides insights
into which strategy is better suited for the extraction of dataflow entities.

Single classification: Each dataflow-related element type (e.g., components, data,
node) is classified individually in separate runs, through their respective informants.
This allows more fine-grained control, through individual prompts and potentially
better results per type, as the LLM only has to focus on one dataflow-related element
type. Similarly, dataflows are extracted in a separate run. As the dataflow related
elements are extracted separately, the LLM does not have to return the type of each
extracted phrase, but a simple JSON array as output is sufficient. This can be seen for the
extraction of components in Figure 5.2. The extracted dataflows are represented as JSON
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5 Extraction and Tracing of Dataflow entities from Requirements

“The component on the charging station must verify authentication
tokens provided by the CSMS, log invalid tokens in the system log, and forward
valid tokens to the for further processing.”

Output: ["EvseManager", "Auth"]

Figure 5.2: Single class annotation for component

"non

objects. As illustrated in Figure 5.3, each object contains the fields "source", "target",
and "data", which describe the origin of the flow, its destination, and the transferred
data.

Joint classification: All dataflow related element types are extracted in a single run.
This allows the LLM to consider the relationships between the element types, which
could help to classify them correctly. In this mode, dataflows are extracted as a follow-up
question based on previously identified entities. This approach is expected to increase
precision since the LLM will classify one extracted phrase with only one type. In the
single classification approach, the same phrase contained in one requirement might be
extracted as a component from one informant and as an entity by another informant.

The expected result, as shown in Figure 5.4, is formatted as a JSON object containing
the extracted elements and their types. The dataflow extracted afterwards follows the
format defined in the entity-wise classification. For both classification modes, prompt
design plays a major role in reaching desired results from the LLM. The dspy [18]
framework was used to create the initial prompt. The prompt created through DSPY

“The component on the charging station must verify
authentication tokens provided by the CSMS, log invalid tokens in the sys-

tem log, and forward valid tokens to the Auth module for further processing.”

Data  Target

Output:
[{"src":"EvseManager", "target":"Auth", "data": ["authentication token"]}]

Figure 5.3: Annotation for dataflow
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“The component on the charging station must verify

authentication tokens provided by the CSMS, log invalid tokens in the

system log , and forward valid tokens to the for further processing.”

Data  Entity = Node

Output:
[{"element":"EvseManager", "type":"Component"}, ...]

Figure 5.4: Joint class annotation for component

was only used as a template, and further optimization was not performed through the
framework. For this, DSPY already provided a prompt that could be used especially
for named entity recognition tasks. As a foundation, a zero-shot prompt was created,
consisting of a system message and a user message. In the system message, the task
and the expected output are defined. Although it is not necessary to use the system
message, as they are not treated much differently from user messages [33], the structure
was still used to organize the interactions and not have everything in the user message
itself. The user message contains the required text and the extraction instructions.
Early tests showed that by using the initial prompt as shown in Prompt 5.2, the used
LLM had no problem adhering to the defined format. Regardless, the results for the
dataflow entity extraction, produced by the LLM, were not satisfactory, which suggested
that the task had to be further defined. For this purpose, the prompt was extended by
type definitions to clarify disambiguities and define the dataflow entities and possible
relationships between them. The additional definitions, shown in Prompt 5.2, were
added to the system prompt. The definitions were taken from the annotation guideline
to provide the prompt with descriptions that are not specifically tailored to the Everest
project. In order to incorporate chain-of-thought prompting, the LLM is supposed to
produce reasoning for the extraction results, as displayed in Prompt 5.2. The reasoning
is not used afterwards, and only the predicted elements are collected for later trace link
creation. Based on the created prompt, few-shot prompting is applied, where the model
is provided examples in addition to the requirement text. In this work, the examples are
taken from the gold standard. The requirement text is put into a user message, while
the expected return value of the LLM is put into an assistant message. These messages
can be chained to each other, depending on how many examples should be provided.
To add examples to the prompt before the extraction runs, the prompt has to be built,
except for the last user message.
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Prompt 4: System Prompt

Your input:

‘requirement_text’ (str): technical requirement
Your output:

‘results’ (list[result]): extracted elements with {reference, type}
Format:

[[ ## requirement_text ## ]]
{requirement_text}

[[ ## reasoning ## 11
{reasoning}

[[ ## results ## 1]
[

{"reference": "...", "type": "..."}

[[ ## completed ## 11
Objective: Given ‘requirement_text‘, produce ‘reasoning‘, ‘results’.

Figure 5.5: System Prompt Joint classification

Prompt 5: System Prompt

Possible entity types:

xxDatax*x: values or information (e.g., attributes)

xxComponent*x: deployable software unit (e.g., database, framework)
*xEntity*x: actor or object holding data (e.g., user, protocol)
*xNodexx: physical or virtual device

Figure 5.6: System Prompt element type definition addition

5.3 Trace link recovery

The existing approach is extended to incorporate the TLR of dataflow entities in
SWATTR. The existing core for tracing architecture components to natural language

40



5.3 Trace link recovery

sentences can be reused in this process. Based on the entity extraction approach (cf.
section 5.2), which provides SWATTR with extracted dataflow entities for further link-
ing, the next steps towards trace link recovery for dataflow entities include the meta
model extension and the connection generation.

The metamodel of PCM used in SWATTR is a simplified submodel of PCM and does not
fully capture all software architecture element types, as only components and interfaces
are parsed from the repository model. To represent the dataflow-related elements,
details from the PCM are added to the existing metamodel. This ensures that additional
architecture items are added to the pool of traceable units. Each item is represented by
its name and unique modelld, which are later on used for the connection generation.
This work added datatypes, resource containers, usage scenarios, assembly contexts,
and SEFFS to the metamodel (cf. section 2.2). While datatypes and SEFFs were already
part of the repository, resource environment, assembly model, and usage model had to
be added as input. From these architectural items, datatypes and resource containers
can be directly traced to the dataflow-related elements, data and node (cf. section 5.1).
Through this extension, it is possible to trace each dataflow-related element: component
to PCM component, data to PCM datatype, nodes and entities to PCM resource container.
By tracing these it is already possible to trace dataflows through its contained elements
source, target and data, as the dataflow-related elements represent these elements. For
future usage, the metamodel was also extended to represent simplified dataflow graphs
represented in PCM. The dataflows contained in the PCM model itself were extracted
similarly to the dataflow graph extraction (c.f. section 2.3), but are represented in
the metamodel as a simplified version, which should be sufficient for TLR purposes.
The usage model, assembly model, and SEFFs contained in components have to be
parsed for this purpose. The usage model provides the entry points for the data flow
extraction, from there on, references are resolved through the model to build a dataflow
graph. Instead of a graph, the participating components and parameters are collected
in a dataflow object, in order to enable tracing to the dataflow graph through its
contained elements. To illustrate the process of the dataflow extraction from PCM,
the following example is taken from the EVerest PCM model. The usage scenario
"Reserve Charger" contains an EntryLevelSystemCall, which points to both a provided
role in the assembly model and an operation signature in the repository. From there,
the assembly context refers to the encapsulated component "EvseManager", and the
SEFF corresponding to the referenced operation signature can be identified. Inside
the SEFF, an ExternalCallAction is found that calls another service and passes the
variable reservation as input. The called service is then resolved back through the
assembly model to the providing component "Authentication", whose SEFF may again
contain further external calls. This process is repeated until no further calls are found
and the flow terminates in a component without outgoing calls. From this, the already
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existing components "EvseManager" and "Authentication" and the data "reservation”
can be collected and stored in a dataflow object, for later tracing.

With the metamodel now representing all architecture items that shall be traced, the
next step for the TLR is the connection generation. The purpose of the connection
generation is to find trace links from architecture items to extracted elements from
requirements. By utilizing LLM for this, no additional heuristics have to be implemented
for the new element types that are supposed to be traced (data, node, entity). For this
task, the LLM is provided with the extracted element from the requirement and the
architecture model context. Based on this information, the model should return the
correct architecture items that can be linked to the extracted phrase. This architecture
model information is provided to the LLM through the prompt. As providing the
PCM as a whole to the prompt is not an option, due to token limitations and possible
diminishing performances, only relevant parts of the model should be sent to the LLM.
This selection is made through the types of elements that were extracted. For elements
of the type components, all PCM component architecture items are selected. Similarly,
the PCM datatypes are selected for data, and the PCM resource containers for nodes
and entities. These architecture items are then parsed to JSON objects containing the
name and modelld of the architecture item. The list of JSON objects is then added
to the user message, together with the extracted element. This is illustrated together
with the expected output in Prompt 5.3. Tracing dataflows relies on the previously
traced dataflow-related elements and the extracted dataflow from the requirement. In
order for this to work, the extracted dataflow-related elements have to be traced first.
If the dataflow is traceable, then a subset of those traced dataflow-related elements is
contained in the dataflow as source, target or data. Through this, some of the extracted
dataflows are filtered out if the source or the target could not be traced.

5.4 Integrationinto SWATTR

The extension of SWATTR for dataflow entity classification is built on the existing
modular pipeline but skips the text extraction stage. In the original architecture shown
in Figure 2.1, requirements are first preprocessed by multiple informants that extract
nouns, compound terms, and dependency structures. These results are then passed as
text state to the recommendation stage, where potential element candidates are created.
In this work, this first stage was skipped. Instead, the requirement texts are directly
forwarded to the recommendation stage without prior preprocessing. The reasoning
behind this decision is that LLMs can already process raw text input effectively, making
separate noun and dependency parsing redundant. This reduces complexity while
leveraging the contextual understanding of LLMs.
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Prompt 6: User Prompt

[[ ## extracted_element ## ]]

{EvseManager}

[[ ## model_elements## ]]

[{ModelElement: "EvseManager", Modelld:"VtwOsJBbEe6OM"},...]
Respond with the corresponding output fields,

starting with the field ‘[[ ## reasoning ## 11,

then ‘[[ ## tracelink ## 1]°

Output:
{"extractedElement":"EvseManager", "ModelElement":"EvseManager",
"Modelld":"VtwOs]JBbEe60M"}

Figure 5.7: Example element connection

A new LlmRecommendationAgent was introduced, which orchestrates several LLM-
based informants. These informants replace the classical NLP-based informants and
generate RecommendedInstances directly from the raw requirement texts.

The following informants were implemented: LimComponentInformant, which detects
mentions of components in the requirement text and classifies them accordingly.
LlmDataflowInformant, which identifies dataflow relationships and their roles (e.g.,
source, target). LimDatatypeInformant, which classifies datatype mentions. LimNerInformant,
which performs a combined named-entity recognition for multiple elements such as
components, data, nodes, entities, and dataflows.

Each informant produces RecommendedInstances, which are written into the
RecommendationState. This state collects all identified entities in a format compatible
with the existing pipeline. Subsequent steps in trace link creation can operate on the
new entity types in the same way as they would on components. For simple elements
such as components or nodes, standard NounMappings are sufficient. For dataflows,
however, the underlying noun mappings were extended with a type field to distinguish
SOURCE, TARGET, and DATA. This is realized through the subclass TypedMapping, which
allows multiple mappings to be grouped into a single RecommendedInstance of the type
DATAFLOW. In this way, dataflows can be represented, while maintaining compatibility
with the existing RecommendationState.

Each informant communicates with an LLM via the ChatLanguageModelProvider. This
utility class provides the setup of chat-based models and supports different platforms
(e.g., OpenAl, Ollama). It manages platform selection, model name, and configuration
parameters such as temperature, and builds the corresponding model instance using
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environment variables for authentication. Through this, the informants remain indepen-
dent of a specific LLM implementation while supporting later extension for additional
platforms.

The platform (ChatPlatform) and model variant (ChatModelName) are configurable
within each informant. The configuration is passed through the pipeline from the
runner to the agent, and finally to the individual informants. This design enables seam-
less experimentation with different LLM providers and models without having to make
changes to the individual informants.

Prompts are configured at the runner level and stored in the DataRepository. Each
informant retrieves its task-specific prompt from the repository and combines it with the
requirement text to construct structured chat messages. This ensures that prompts are
managed centrally, allowing them to be reused, versioned, or replaced for comparative
experiments.

The construction of messages and the parsing of results regarding LLMs are handled
by the Limutility class. This helper provides static methods to format prompts as
SystemMessage, UserMessage, and AiMessage objects, and to extract structured results
from model outputs. Depending on the task, the results are parsed using regular
expressions or JSON and mapped to NounMappings or TypedMappings, which are then
written into the RecommendationState.

By delegating model instantiation to the ChatLanguageModelProvider, prompt man-
agement to the DataRepository, and prompt/response handling to the LimUtility, the
informants themselves remain lightweight. Their task is reduced to orchestrating the
flow of data: retrieving prompts, constructing messages, invoking the LLM, and writing
the parsed results into RecommendedInstances. This separation of concerns ensures
modularity and reusability across different LLMs, prompt strategies, and extraction
tasks.

For the extension of the metamodel a new PcmExtendedExtractor has been created,
to parse additional model elements to Architectureltems. While Components were
extended by SEFF descriptions, datatypes, and resource containers were added as
architecture items as well. Additionally, a DataflowExtractor was added to propagate
through the PCM and find modeled dataflow graphs. This extractor was not used for
tracing the architecture items yet, and provides an opportunity for future work, to
incorporate traceability to dataflow graphs. The architecture items, that were added as
Endpoints are PCM Components, PCM Datatypes, PCM Resource Containers and PCM
Interfaces. The PcmExtendedExtractor is used in the ModelExtraction phase, which
stores the extracted architecture items in the shared datarepository for later stages.
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For the last step of the trace link recovery pipeline, the Element Connection stage was
extended to utilize LLMs. A new LlmConnectionAgent and LImConnectionInformant
were implemented. Similar to the RecommendationStage, the LiImConnectionInformant
relies on the ChatLanguageModelProvider to interact with a configured model. For
each dataflow-related element, one request is sent to the LLM, providing the extracted
elements together with candidate architecture items. The model output is then parsed,
and the results are added as trace links. For dataflows themselves, the tracing process
depends on the individual dataflow-related elements. Once both source and target of a
dataflow have been traced successfully, a new trace link is created by aggregating the
trace links of source and target, thereby establishing the trace link for the dataflow as a
whole.
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6 Evaluation

This chapter concerns itself with the evaluation of trace link recovery (TLR) for dataflow-
related elements. As an intermediate evaluation, the extraction for those elements from
natural language requirements can be assessed in order to address the first research ques-
tion. The goal is to determine to what extent large language models (LLMs) can replace
heuristics in SWATTR and improve the coverage and precision of dataflow-oriented
traceability. Also part of the evaluation is the assessment of different classification
strategies, prompt strategies, and models in order to find an optimal configuration.
By utilizing the EVerest gold standard (cf. chapter 4) and the software architecture
model, the evaluation aims to provide findings that are transferable to other projects
and domains. The following sections introduce the evaluation techniques and results.
First, the extraction of dataflow-related elements, entities) from requirements is evalu-
ated (evall). Based on these results, the extraction of dataflows from requirements is
assessed (eval2). To address the second research question, the trace link recovery of
dataflow-related elements is evaluated (eval3). Lastly, the results of the trace link recovery
of dataflows are assessed (eval4) to address the second part of the research question.

6.1 Evaluation Methods

For the evaluation, a 5-fold-cross-validation was used. Through this method, the gold
standard is shuffled and separated into five folds of similar size. The resulting folds
can each be used separately for evaluation, while the remaining four folds are used for
training. As there are 93 requirements, the fold sizes cannot be equal. Instead, five folds
with 18 requirements each were created. The remaining three requirements were each
assigned randomly to one fold, resulting in two folds with 18 requirements and three
with 19. The difference in training pool size can be ignored, as only a small amount
is used for the LLMs. For each fold, a separate evaluation is done, counting the true
positives (TP), false negatives (FN), and false positives (FP), to calculate the precision,
recall, F1-score, and F2-score. These values can be used to determine the macro and
micro averages.

For each fold, the training data of the remaining folds are used for the construction
of few-shot prompts. For few-shot prompts, it can be commonly observed that the
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performance of the used model increases initially with the amount of examples provided.
However, after a certain number of examples, the performance decreases [21]. This
means that not every training sample available should be added to the prompt. For a
first evaluation to assess the effect of few-shot prompting, four examples are added to
the prompt. First, a random selection is tested, and then a selection is made to create
a representative example set, with a limited number of examples used. For such a
selection, different strategies were applied.

One strategy used is the deterministic selection of few-shot examples. In the gold
standard, each requirement is represented by its set of annotated entity types and by the
tokens from its requirement text. Textual similarity between requirements is estimated
using the Jaccard similarity. The Jaccard similarity measures the overlap between two
sets A and B and is defined as

|AN B

J(AB) = |AU B|

with values from 0 for no overlap and 1 for identical sets. For this evaluation, A and B
represent the token sets of two requirements. As the similarity measures are ranked,
an additional threshold does not have to be defined. This measure is used to ensure
diversity in the chosen examples. The evaluations use three different modes to select
few-shot examples: joint-class mode, single-class positive mode, single-class balanced
mode, or random mode.

Random mode The training pool is shuffled, and four requirements are taken from it
by creating a subset of the collection. For the shuffling a seed is set, for reproducibility.
This mode serves as a simple baseline strategy, without explicitly considering balance
or diversity.

Joint-class mode The goal in this mode is to select four examples that cover all relevant
element types at least once. The selection proceeds in two phases:

1. Coverage phase: Starting with an empty set S of selected requirements and uncov-
ered types U = T, where T is the set of all element types, requirements are then
added iteratively using a greedy set cover strategy. In each step, the requirements
in the training data are compared to each other, based on the number of uncovered
types they contain. The requirement with the highest gain is added to S, and the
covered types are removed from U. This is repeated until all types are covered or
S| = 4.

2. Diversity phase: If fewer than four examples have been selected after coverage,
the remaining examples are filled with requirements that are most dissimilar to
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the already chosen examples, ensuring variety in the selected set. For this, the
Jaccard similarity is used.

Single-class positive mode In this mode, only a single element type ¢ (e.g., component)
is considered. The pool of examples is restricted to the ones containing at least one
annotation of t. From this pool, four requirements are chosen to be as diverse as possible,
again using Jaccard similarity. This mode provides the model with multiple varied
examples of the same type.

Single-class balanced mode A single target type ¢ is considered, but a balanced set of
positive and negative examples is selected. The pool is split into positives (requirements
containing t) and negatives (requirements without t). From each subset, two examples
are selected. The first one is chosen randomly, and the second by selecting the most
dissimilar to the already chosen requirement, utilizing the Jaccard similarity. The two
subsets are then combined into the final example set. This ensures that the model
observes positive and negative cases with equal frequency.

If several requirements achieve the same gain, the one covering the rarest types in the
dataset is preferred. This approach ensures that the selection of examples not only
covers all element types but also is reproducible and diverse.

LLM selection

For the evaluation, two different Large Language Models (LLMs) were used: GPT
and LLaMA. Both models are transformer-based pre-trained LLMs that can process
natural language input and generate structured output. They received identical inputs
(system message, few-shot examples, requirement text) and were instructed to output
the same JSON format for extracted entities. As a result, GPT and LLaMA could be used
interchangeably in the recommendation stage without modifications to the surrounding
pipeline. While GPT was accessed through the OpenAI API, LLaMA was hosted via
Ollama.

GPT was selected for this thesis as it represents the state-of-art of proprietary LLMs,
and consistently achieves high performances across different tasks [30]. LLaMA, in
contrast, was chosen as an open-source alternative that can be hosted locally. This is
especially valuable for security-related topics, as no confidential data has to be shared
externally. In addition, local deployment avoids reliance on proprietary APIs and offers
a more cost-efficient setup. Through this selection, both ends of the current LLM models
can be covered: closed-source, high-performance models on one hand, and open-source,
efficient models on the other hand.
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This thesis aims to make use of the latest GPT model available. At the time of writing,
this would be GPT-5, which represents the latest iteration of the GPT family. How-
ever, the current API of GPT-5 does not allow controlling the temperature parameter.
Temperature is a parameter that is used to configure the randomness of a model. Johns
et.al [34] suggest to use a temperature of 0.0 to achieve optimal results in problem
solving tasks. Their study showed, that when a higher temperature was used, most
mistakes made where caused by the model not adhering to the defined output format.
This phenomena could also be observed in the few test runs, where GPT-5 was used.
Not only did it sometimes deviate from the defined output schema, but it could also
be observed a considerable number of times, where terms were extracted which were
not part of the provided requirement. Since deterministic and reproducible outputs in
strict JSON format are essential for tasks such as entity extraction and recommendation
generation, GPT-5 was not used in this work.

Instead, GPT-4.1 was selected as the primary model used, as it is the latest iteration of
the GPT-4 line (released in April 2025) and provides strong performance while support-
ing temperature adjustment [30]. In addition, the smaller variant GPT-4.1-mini was
used to evaluate how performance changes when a less resource-intensive model is
used.

For LLaMA, the LLaMA 3 8B model was selected. The LLaMA 3 family, released by
Meta in 2024, includes models of different sizes [11]. The 8B variant was chosen as
it still achieves competitive results on standard benchmarks [11], although it is the
smallest model.

The ability to host it locally makes it the choice for experimentation in research contexts
where reproducibility and limited computational resources are important factors.
Larger LLaMA variants, such as the 70B and 405B models, achieve higher benchmark
scores but require substantially more resources. By selecting LLaMA 3 8B, the evaluation
simulates the scenario where results must be obtained under limited computational
budgets, complementing GPT as a high-end proprietary variant.

6.2 Element Extraction

This section addresses the evaluation of the first research question. This research
question can be separated into the classification of dataflow-related elements and the
classification of dataflows themselves. This distinction is possible because dataflows
are conceptually different from the elements they contain. Element types like nodes,
entities, components, and data exist independently and can be classified separately. A
dataflow, in contrast, is defined as a relation between these elements, assigning roles
such as source, target, and data. Therefore, its correct identification requires not only
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extracting the individual elements but also capturing their roles within the flow, making
it a much more abstract classification task.

To evaluate the extraction of dataflow-related element (evall), the results that the LLMs
provide for the extraction are checked against the gold standard. The acceptance
windows defined in the gold standard can be used for the matching. The results
are assessed for each dataflow-related element type separately. A TP is counted if a
predicted phrase and its assigned element type match an entry of the same type in the
gold standard. Such a match is achieved if the phrase lies within the boundaries of the
acceptance window. This means that it has to contain the short sequence but should
not exceed the long sequence annotated. An FN is counted when a gold standard entry
exists, but no corresponding prediction matches the acceptance window criterion. In
this case, the element was present in the gold standard but was missed by the model.
An FP is counted when a predicted phrase with its assigned type does not match any
corresponding entry in the gold standard for that requirement. This includes cases
where either the phrase boundaries lie outside the acceptance window or the predicted
type does not correspond to the annotated type. True negatives can not be counted
in named entity recognition tasks, as the absence of a prediction can not be mapped
to the absence of a gold standard entry. They are also unnecessary to calculate the
metrics precision, recall, F1-score, and F2-score (c.f. section 2.7). The macro averages are
calculated for each element type across the folds, determining the stability of the used
approach across the different folds. The micro averages are calculated for each element
type separately to observe the overall performance for each type. Additionally, the
macro averages across all element types are determined, in order to give a performance
measure regardless of type representation in the requirement pool. For this, the TP, FN,
and FP for each element type across all folds are collected. For the evaluation different
configurations of prompting strategies and models are tested. The joint-classification
(JC) and single-classification (SC) modes are evaluated against each other, using zero-
shot prompting. For both modes, the effects of few-shot prompting are tested. For the
few-shot examples, different selections of the training pool are evaluated. This means
for SC mode, few-shot examples containing only entries with the respective element
types (Positive) and a balanced training pool with two examples containing the element
type and two examples without (Balanced). The best configuration is then tested with
different models.

The results that the LLM provides regarding extracted dataflows are assessed for the
evaluation of the extraction of dataflows (eval2) from requirements. As described in
the gold standard, a dataflow contains source, target, data, and transmission. The
transmission does not have to be identified, as it is not used for the tracing. A TP
for the extraction of dataflows is counted when the LLM recognizes all three values
correctly. The source and target in the dataflow refer to short sequences, references,
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or coreferences of the element types component, node, and entity. Similarly, the data
value refers to an entry in the data annotations. Through this, it is possible to utilize
the acceptance window of each element type to assess a match. An FN is counted when
no predicted dataflow matches an entry in the gold standard. Partial matches are also
counted as FN, for example, when only two of the three values are predicted correctly.
A predicted dataflow is determined a FP, if such a dataflow does not exist in the gold
standard. In this strict matching, a nearly correct dataflow leads to an FP and an FN.
Similar to evall, the precision, recall, F1-score, F2-score, and their micro and macro
averages are calculated for the dataflow element. For the dataflow extraction zero-shot
and few-shot prompts are tested against each other. Also evaluated is the effect of
providing the extracted dataflow-related elements as additional information on the
extraction of dataflows.

6.3 Trace link recovery

The trace link recovery of dataflow-related elements (eval3) is evaluated based on correct
trace links created. All recovered trace links are compared to an entry in the gold
standard. A trace link is represented in the gold standard through the annotated modelID
of a labeled element. For each requirement, the predicted trace links are compared to
the trace links that should be contained. A TP is counted when the extracted trace links
matches a gold standard entry. This means that the extracted term has to match the
acceptance window of an element, and the modelIDs have to be equivalent. An FN is
counted when the requirement holds an entry for a labeled element, where a modelID
is annotated, but such a trace link has not been extracted. FP may indicate a missing
annotation in the gold standard. These cases where a predicted trace link does not
match the modellD and acceptance window of any element type are counted as FP.
Based on these values, the macro-averaged precision, recall, F1, and F2 can be calculated
for each element type across all folds. The macro average across all element types is
also determined to evaluate TLR performance, considering less represented element
types. First, the trace link recovery with the gold standard as recommended instances
is tested, with both the LLM and using the SWATTR heuristics. This is followed by the
evaluation of the trace link recovery integrated with the extraction of data-flow related
elements used in evall.

For the evaluation of the trace link recovery of dataflows (eval4), the extracted dataflow
trace links were supposed to be matched against completely defined dataflows in the
gold standard where all three roles source, target and data are annotated to modellds.
As no such dataflows exist and generally only 18 dataflows exist, where all roles
are annotated, the evaluation of the trace link recovery of dataflows (eval4) is done
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qualitatively. Another important factor is, that the gold standard only contains five
dataflows, where source and target are traced to a architecture element. Through this
evaluation, the data flow tracelinks are analysed case by case by the author to assess
the value of extracted data flow tracelinks. A TP is counted if one of the five entries
matches the extracted dataflow. For this evaluation only matching of the source and
target is assessed, regardless on how the data is traced. Another case where a TP is
counted, is when the elements of the traced dataflow have meaningful traces to the
model, while the dataflow is described in the requirements text. For this assessment the
author will use the definitions of the annotation guideline. Such a TP, which was not
labeled in the gold standard indicate, missing labels for the traces. An FP is counted
when the trace links lead to unrelated architecture items or when the traces are correct,
but the extracted is not a dataflow in the requirement text. These decisions are done
subjectively by the author, and thus the personal decisions are documented to provide
some degree of transparency. A FN is counted, when a gold standard dataflow entry
exists with with source and target annotated to a architecture item, but the trace link
recovery completely missed it.

6.4 Evaluation Results

6.4.1 Element Extraction

For the evaluation of the extraction of dataflow-related elements different approaches
are compared to each other leading to a final approach which is compared to the base
line. For the evaluation of different methods GPT 4.1 is used. For evall, two different
approaches were compared: the single-class (SC) prompt mode and the joint-class (JC)
prompt mode. In the SC prompt mode, the LLM is only tasked to extract one element
type. Meanwhile, in JC mode, the LLM is tasked with extracting all elements in one
go. As a base of comparison, the modes were compared to each other using zero-shot
prompts.

As illustrated in Figure 6.1, the JC method consistently outperforms the SC approach
across almost all evaluated element types. For components, JC achieves a higher median
F2-score of 0.82 and a tighter distribution, indicating a more stable performance. While
the recall for extracted components was similarly high (SC 0.83 vs. JC 0.86), the precision
was 12% points higher when using JC (0.70), which aligns with the assumption made
that using the JC will lead to fewer FP, as no phrases are labeled as multiple element
types.

The difference is even more pronounced for data and nodes, where SC shows substan-
tially lower scores and higher variance, whereas JC maintains both higher medians and

53



6 Evaluation

F2 per element type: Single class (SC) vs. Joint class (JC)
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Figure 6.1: Evaluation of extraction of dataflow-related elements: zero-shot comparison of single
class and joint class

better overall consistency. Especially the extraction of data elements benefited from the
usage of the JC method, as the recall was higher by nearly 17% points (0.90), while the
precision significantly was higher too with 0.58 compared to 0.27. For the extraction
of nodes the recall values achieved by the different methods are closer to each other
(JC 0.76 vs. SC 0.78), but the JC method could significantly increase the precision by
42% points (0.59). The resulting F2-scores are closer to each other for entities. While
SC does provide better recall by 14% points (0.57), the precision of the JC method was
significantly better.

The overall performance gain for the extraction of dataflow-related elements of the JC
method is reflected in the higher macro-averaged scores across all metrics. Macro
precision improves substantially from 0.337 in the SC mode to 0.596 in JC, while macro
recall remains similarly high (SC 0.733 vs. JC 0.740). This shows that both approaches
can capture a comparable proportion of relevant elements, while the JC approach
reduces the number of FP. The improvement is further reflected in the macro F1-score
(SC 0.43 vs. JC 0.64) and the macro F2-score (SC 0.55 vs. JC 0.69), both of which show the
superior balance between precision and recall obtained by the JC method. These macro
values reinforce the findings of the per-class analysis, demonstrating that the joint class
configuration provides a more effective overall strategy for element classification.

The expected higher recall of SC could not be confirmed, except for entities. Additionally,
the SC takes up considerably more resources, as for each requirement and each element
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F2 per element type: Joint class (JC) Zero-Shot vs. Joint class (JC) Few-Shot
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Figure 6.2: Evaluation of extraction of dataflow-related elements: Comparison of joint class
using few-shot against zero-shot

type, one call to the LLM has to be made. This means for 93 requirements, 372 requests
are sent, which also takes a longer time to finish in sum.

Few-Prompt

In order to evaluate how few-shot prompting affects the extraction of dataflow-related
elements, four examples are randomly selected (random mode) from the training pool.
The examples are parsed into the expected LLM output for the SC and JC modes to
construct few-shot prompts. Results showed that using additional examples mostly
benefited both SC and JC modes. This can be seen for the JC in Figure 6.2. The JC method
with few-shot prompting achieves overall higher F2-scores compared to the zero-shot
variant. For components, few-shot reaches a slightly higher median F2-score (FS 0.85
vs. ZS 0.82) and a larger maximum, indicating consistent but moderate improvements.
This is also reflected in the recall, which only slightly improved when using few-shot
prompting (0.88). The effect is more pronounced for data, where few-shot shows
a median F2-score of 0.87 compared to 0.85 in zero-shot, while achieving a tighter
distribution, reflecting greater stability across folds. The macro recall for data stayed
relatively high with a value of 0.89. For nodes, the results are mixed: zero-shot maintains
a slightly higher median F2-score (0.80), while few-shot achieves higher top values
but greater variance. At the same time, the recall for the extraction of nodes was
improved significantly, with a macro average recall of 0.85 compared to the zero-shot
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F2 per element type: Single class (SC) Zero-Shot vs. Single class (SC) Few-Shot
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Figure 6.3: Evaluation of extraction of dataflow-related elements: Comparison of single class
using few-shot against zero-shot

approach achieving 0.76, resulting in an improvement of 9% points. For entities, few-
shot achieves a median F2-score of 0.51 compared to 0.44, achieving a higher maximum
value, while the variance is similar for both approaches. These results demonstrate that
few-shot prompting generally provides more robust performance, with particularly
strong benefits for recall of the node extraction when using JC mode. Compared to these
results, the SC mode benefited more from few-shot prompting as shown in Figure 6.3.
For components, the median F2-score increases from 0.75 in zero-shot to 0.8 in few-shot,
with higher top scores of 0.9. This result is reflected in both higher average recall for
component extraction with 0.88 and precision 0.68, compared to the zero-shot approach
with an average recall of 0.83 and precision of 0.58. The effect of few-shot prompting
is more pronounced for data, where a median of 0.64 is achieved compared to only
0.53 in zero-shot. The few-shot approach combined with the SC mode achieved for the
extraction of data elements a similar average recall (0.74), while increasing precision
significantly by 13% points (0.42). For nodes few-shot increases the median F2-score to
around 0.58 and reached a higher maximum value with 0.87. This is reflected in the
considerably higher precision for the extraction of nodes, which increased by 18% (0.35),
while average recall for the extraction of nodes stayed the similar with(0.77). Finally,
entities also benefit from few-shot prompting, which improves the median F2-score
by 7% points (0.51), while achieving the same average recall (0.57), while increasing
the precision (0.43). These results demonstrate that few-shot prompting improves
the single-class approach over all dataflow-related element types, with particularly
large benefits towards precision. Through few-shot prompting both modes JC and SC
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now achieve more similar results than compared to the zero-shot approach. Only in
the average recall for the extraction of entities the SC approach holds a higher value
with 0.57. While for components bot JC and SC combined with few-shot prompting
achieved similar results, the recall for data and nodes are still significantly higher (see
Table 8.2).

Example selection

On this basis, it is evaluated if the selection of examples given to the LLM in the few-shot
approaches affects the results. For the SC mode, the LLM was provided only by examples
regarding each element type (single class positive mode). Results showed that only the
recall of the component extraction increased, reaching an average of 0.91. Meanwhile
the recall for all other extractions decreased resulting in a macro average recall of 0.75.
When the examples were chosen through the balanced mode, the recall increased by 6%
points for the extraction of data (0.8), maintaining a similar precision (0.4) compared
to the few-shot approach, where the examples are chosen randomly. The increase
was smaller for nodes, but still achieving the best recall yet for SC (0.81). Overall, the
selection of the examples did not have much of an impact, but with a balanced example
set, GPT 4.1 in SC mode could achieve better results then with the single class positive
mode, across all dataflow-related element types besides for components.

For the JC mode, examples were now chosen deterministically, ensuring a representative
training set. Through this, the JC few-shot approach achieved higher recalls for the
extraction of components and data (components 0.91, data 0.94), compared to the
approach where examples are taken randomly out of the training pool. At the same
time the recall for both the extraction of node and entity stayed nearly the same, with a
decrease for entities of 5% points (0.41). This means the configuration achieving the best
overall results is JC mode utilizing few-shot prompting with a representative example
pool, where all element types are represented.

Model selection

In order to assess the effect of the choice of LLM model, the JC mode with few-shot
prompting and selected examples using GPT-4.1 is compared to GPT-4.1 mini and
LLaMA 3 8B. As illustrated in Figure 6.4, GPT-4.1 achieves the highest and most stable
performance across folds, with F2-scores ranging from 0.67 to 0.79 and a median of
approximately 0.71. In comparison, GPT-4.1 mini yields lower and more variable results,
with F2-scores between 0.57 and 0.73 and a median of about 0.65, indicating a noticeable
performance gap to GPT-4.1. This is also reflected in the recall across all element
types. Especially for data where the recall decreased by 16% points to 0.78 and node
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Figure 6.4: Dataflow-related element extraction model comparison using JC and det few-shot
prompts

with a decrease of 13% points to 0.72. LLaMA 3 8B performs significantly worse, with
F2-scores only between 0.30 and 0.49 and a median around 0.44, making it clearly
less usable for this task, as the macro average recall decreases significantly across all
dataflow-related element types by 40% points to 0.38. Overall, these results highlight
that GPT-4.1 provides the most effective and reliable performance, while GPT-4.1 mini
offers a weaker alternative and LLaMA 3 8B is not suited for this task, although it did
process the requests the fastest. When comparing against the element extraction of
SWATTR as a baseline, results show an increase in correctly created recommended
instances when using the JC mode with a deterministic selected few-shot example using
GPT 4.1. As the SWATTR approach focuses on achieving a high recall and filtering out
FP later in the pipeline, the recall values are compared in the following section. These
are shown in Figure 6.5, where the best performing LLM approach achieves consistently
higher recall compared to the SWATTR baseline for most element types. For components,
GPT-4.1 reaches a median recall of 0.91, clearly outperforming SWATTR, which remains
at 0.80. The difference is even more pronounced for data, where GPT-4.1 achieves
nearly perfect recall across folds, while SWATTR achieves a median of about 0.70. For
nodes, SWATTR shows high variability, ranging from 0 to 1, whereas GPT-4.1 achieves a
consistently high recall. In contrast, the extraction of entities remains a challenging task
for both approaches, with low recall values overall and only marginal improvements
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Recall per element type: Joint-class few-shot GPT 4.1 compared to SWATTR
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Figure 6.5: Recall SWATTR and GPT 4.1

observed for GPT-4.1. Overall, these results indicate that GPT-4.1 substantially improves
recall over the baseline for components, datatypes, and nodes, while performance for
entities remains similar. All results regarding evall can be found in the Table 8.2.

6.4.2 Dataflow Extraction

For the evaluation of the extraction of dataflows (eval2), the focus will lie on micro-
averaged values, as they provide a more stable estimate of overall performance by
pooling predictions across folds. Macro-averaged results are included for completeness,
but show high variance due to fold imbalance, since some folds contain only very few
complete dataflows.

As shown in Table 6.1, the few-shot configuration increases recall compared to zero-
shot, both in the macro average from 0.35 to 0.45 and in the micro average from 0.46 to
0.54. Macro precision remains low for both approaches, with 0.16 for few-shot and 0.19
for zero-shot, indicating that the LLM frequently predicts dataflows that do not exist,
resulting in a high number of false positives. This is also reflected in the F2-score, which
weights recall more strongly, increasing from 0.346 to 0.396 in the micro setting. While
precision is largely unchanged, recall and F2 clearly benefit from few-shot prompting.
Since in requirements tracing recall is typically prioritized over precision, the few-shot
configuration provides a more usable result.
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Figure 6.6: Dataflow extraction method comparison using GPT 4.1

Compared to these results, using additional extraction context of dataflow-related
elements for the dataflow extraction showed mixed effects. In the zero-shot setting,
context increases precision from 0.192 to 0.31 (macro) and from 0.175 to 0.31 (micro),
while recall remains similar (0.35 vs. 0.33 macro, 0.458 micro in both cases). This
yields a higher F1 (0.37 micro) and F2 (0.42 micro), indicating that context improves
zero-shot extraction by reducing false positives. In contrast, the few-shot with context
approach fails to replicate the recall gains observed without context. Recall drops
from 0.45 to 0.31 (macro) and from 0.54 to 0.42 (micro), while precision remains low.
This leads to lower F1 and F2 values compared to the plain few-shot approach. The
distribution of F2-scores across folds further shows the varying performance, regardless
of method used, as illustrated in Figure 6.6. While Zero-Shot and Few-Shot show
relatively tight interquartile ranges with outliers at 0, the additional context results in
much higher variance. In particular, zero-shot enriched with context shows the widest
spread, ranging from near-zero to 0.68. The few-shot prompt with context also shows
increased instability compared to the basic few-shot, with several folds dropping to
very low performance.

Overall, these results suggest that additional context can support zero-shot prompting,
especially improving precision, but in the few-shot configuration used, it reduces recall
and affects overall performance. Regardless of the approach tested, the performance
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Table 6.1: Evaluation results for dataflow extraction. Macro = mean across folds, Micro = pooled
across folds.

Method P R F1 F2

macro micro macro micro macro micro macro micro

Zero-shot 0.192 0.175 0353 0458 0.248 0.253 0.302 0.346
Few-shot 0.162 0.191 0453 0542 0.232 0.283 0.322 0.396
Zero-shot + context  0.308 0.306 0.330 0.458 0.306 0.367 0.317 0.417
Few-shot + context  0.226  0.227 0.313 0417 0.246 0.294 0.275 0.357

of dataflow extraction using GPT-4.1 remains similarly low, highlighting the difficulty
of this more abstract task for LLMs compared to the extraction of dataflow-related
elements.

6.4.3 Trace Link Recovery of Dataflow-Related Elements

As illustrated in Figure 6.7, the performance of trace link recovery strongly depends
on whether the gold standard elements or automatically extracted dataflow-related
elements were used. When evaluated with the gold standard annotations as input,
GPT4.1 outperforms SWATTR across almost all element types. For components, GPT4.1
achieves both higher precision by 11% points (0.88) and recall by 15% points (0.88),
resulting in a clear improvement in the F2-score (GPT-4.1 0.879 vs. SWATTR 0.737). This
can also be seen in the distribution of F2-scores across folds for tracing components.
Here, GPT-4.1 achieved a higher median (0.77) compared to SWATTR (0.52), with the
maximum value being lower than the minimum value of GPT-4.1. As the heuristics used
in SWATTR were not adjusted for the additional element types, the performance across
those new types was expectedly worse. The difference is particularly high for nodes,
where GPT4.1 reaches a recall of 0.96 compared to 0.33 for SWATTR, leading to more
than double the F2-score (GPT-4.1 0.90 vs. SWATTR 0.36). Similarly, for entities, GPT4.1
shows a strong recall advantage (GPT-4.1 0.81 vs. SWATTR 0.08), though at the cost of a
low precision. The extraction of data remains challenging for both methods, but GPT-4.1
provides a modest gain in F2 (0.247 vs. 0.067). On the macro level, these improvements
translate into a substantially higher F2-score of 0.635 for GPT4.1 compared to 0.312 for
SWATTR, reflecting a more balanced recovery of dataflow-related elements.

The results change when using automatically extracted elements from evall as input.
Here, both methods show a clear drop in performance due to error propagation from
the extraction step. SWATTR maintains slightly higher macro precision (0.366 vs. 0.292),
but GPT4.1 demonstrates considerably stronger recall (0.736 vs. 0.257). This difference
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F2 for component trace links: Joint-class few-shot GPT 4.1 compared to SWATTR

0.9 1

0.7 4
~

-

0.6

0.5 1 _I_

0.4 1

4 0N
Go\d scand®’ WM exeract®

—— SWATTR GPT 4.1

Figure 6.7: Component trace link F2-scores for SWATTR and GPT-4.1, using the gold standard
and the LLM extraction from evall

is most visible for nodes and entities, where GPT4.1 reaches recall values above 0.90,
compared to 0.40 and 0.03 for SWATTR. The low precision of GPT-4.1 for components
(0.30) leads to a large number of false positives, which negatively affects the overall
F2-score. SWATTR shows a more stable distribution of F2-scores, with a higher median
(0.76) compared to SWATTR (0.56). While GPT4.1 provides a higher recall by 19% points
(0.79), the low precision is reflected in the F2-score. On the macro level, GPT4.1 achieves
a higher F2-score (0.545 vs. 0.265), indicating that despite noisier input, GPT4.1 can still
recover a larger portion of true links, but at the expense of precision.

Overall, the eval3 shows that GPT4.1 is capable of surpassing the heuristic baseline when
accurate gold standard elements are available. However, once element extraction errors
are introduced, GPT4.1’s advantage shifts towards recall, while SWATTR maintains
stronger precision and stability. This indicates the sensitivity of LLM-based approaches
to propagated errors. All results regarding eval3 can be found in Table 8.2.

6.4.4 Trace Link Recovery of Dataflows

For the trace link recovery of dataflows (evald), the extracted dataflow-related elements
from evall and the dataflows from eval2 were used to create trace links. In eval2,
GPT-4.1 with the few-shot setup (without extraction context) extracted 47 candidate
dataflows, which, after the tracing step, were reduced to 18 flows where both source
and target could be mapped to elements of the EVerest model.
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Table 6.2: Results trace link recovery of dataflows (eval4)

TP FP FN Precision Recall F; F,
Eval4 8 9 0 0.47 1.00 0.64 0.82

In the gold standard, five dataflows are fully labeled with source and target model IDs
(Req. 7, 34, 64, 15, and 8). For all of these, the LLM was able to trace both source and
target correctly. For example, in Req. 7 the dataflow from "CSMS" to the "OCPP modules"
was correctly traced to the architecture elements ChargingStationManagementSystem
and OCPP. Req. 15, describing a dataflow from "EvseSecurity" to the "EV" including
"private keys", was also counted as correct, as traces for source and target were correct,
although the data was traced to an unrelated element.

From the remaining 13 extracted dataflows, three represented valid dataflows that were
not part of the gold standard annotations (for example, Req. 70 describing an "API
module" sending "session events" to an "external system"). These extracted dataflow
trace links were deemed as traced correctly, showing that the approach can also identify
dataflows that were overlooked in labeling. The remaining nine cases were false posi-
tives. They consisted mainly of requirements describing storage relations rather than
actual data transfer (e.g., Req. 71 describing the "charging station" storing "certificates"
in the "TPM"), descriptions of control flow such as authentication results (e.g., Req. 47
describing the "Auth module" signaling to the "EvseManager", that it can proceed after
authentication), or cases where source or target were traced to unrelated architecture
items.

Overall, this results in eight true positives, nine false positives, and no false negatives.
From these values, the micro precision over all folds calculated is 0.47, recall 1.0, with
an F1-score of 0.64 and an F2-score of 0.82. While recall reaches 1.0, as all annotated
gold standard dataflows were recovered, precision remains low, indicating that many
extracted candidates are not valid dataflows. These results suggest that the approach is
capable of identifying correct dataflows when both endpoints are clearly modeled, but
struggles with differencing between dataflows and storage or control flow. The found
trace links and notes regarding eval4 can be found in Table 8.3.

6.5 Discussion and Threats to Validity

In this section the results of the prior evaluation are discussed, followed by possible
threats to validity. In the extraction of dataflow-related elements (evall), the prompt
configurations showed clear differences in performance. The joint-class (JC) approach

63



6 Evaluation

consistently outperformed the single-class (SC) approach for all configurations. The
assumption that the recall would be higher when using SC mode could not be confirmed,
as JC achieved a higher macro recall by 2% points for both methods’ best configurations
(0.78), while at the same time reaching a 16% points higher precision (JC 0.63).

The use of few-shot prompting mostly affected precision, while recall values were
maintained. In JC mode the recall only increased slightly (0.74 to 0.77), while precision
improved from 0.58 to 0.62. The effect of few-shot prompting was more pronounced in
SC mode, where macro precision increased by 15% points (0.47), leading to significantly
higher F2-scores for all element types. The effect of example selection was less critical,
with only minor variations observed depending on whether examples were chosen
randomly, single-class positive, or balanced.

Model choice played a significant role. While GPT-4.1 provided the most stable and
effective results with a macro F2-score across all element types of 0.73, GPT-4.1 mini
reached only 0.65, and LLaMA 3 8B dropped to 0.40, making it unsuitable for this task
despite its faster runtime.

When compared against the recall-oriented SWATTR baseline, the LLM-based approach
showed improvements. SWATTR achieved strong recall for components with a value of
0.80, but GPT-4.1 in JC mode combined with few-shot prompting outperformed it with
a recall of 0.92. For the other element types, SWATTR performed worse, as expected,
since its heuristics were designed primarily with component extraction in mind.

The extraction of the other element types using the best-performing LLM approach
showed similar performances, except for entities. For entities, only a recall of 0.41
could be achieved with a precision of 0.6. This probably stems from the more abstract
definition of entities provided through the annotation guidelines, which leads to the
LLM struggling with extracting entities. Although explicitly defined, that entities may

be protocols or libraries, many of them were missed out (e.g., "libevsesecurity”, "power-
meterdriver", "ocpp1.6"), and were extracted as components or nodes. This may indicate
that the definition provided to the LLM is not detailed enough to make the distinction
between the element types clear. This means that although the LLM extracted the
correct elements, it mislabeled a significant portion of them, leading to FN for element
types where they are missing and FP for types where they occur. In summary, the LLM
approach used still mostly showed promising results for the extraction of component,

data and nodes. The results for entities remained mixed, regardless of the method used.

The evaluation of the extraction of dataflows (eval2) showed that overall performance
remains low, regardless of the chosen configuration. Few-shot prompting mainly in-
creases the average recall to a micro average of 0.54, while precision remains largely
unchanged (0.19). This leads to a micro average F2-score from 0.39. While few-shot
prompting provides more usable results by extracting more relevant dataflows than
zero-shot, many false positives remain. Although often the source and target of the
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dataflow could be extracted correctly, most of the times the LLM struggled with labeling
the correct data elements.

The use of additional extraction context of dataflow-related elements showed mixed
effects. In the zero-shot setting, context increases precision considerably by 11% points
(micro 0.31) while recall remains low (micro 0.46), leading to higher F1 (0.37) and F2
(0.42) scores. This suggests that context helps to reduce false positives when no ex-
amples are provided. In contrast, in the few-shot configuration, context reduces recall
substantially by 12% points (micro 0.42) without compensating for improvements in
precision, resulting in lower F1 and F2 values overall. The distribution of scores across
folds further highlights the instability introduced by context. While zero-shot and
few-shot prompting alone show relatively tight distributions, adding context results
in much wider spreads, with some folds dropping to near-zero performance. As fully
specified dataflows were relatively rare in the gold standard, the evenly distribution of
them across the folds could not be guaranteed, they the requirements were shuffled
randomly, resulting in folds, where only a small number of dataflows exist. Because
of this, the micro-averaged results give a better overview of the dataflow extraction
performance. Taken together, these results suggest that context can improve zero-shot
extraction by reducing false positives, but when combined with few-shot prompting, it
reduces recall and overall performance. Across all methods, the extraction of complete
dataflows with GPT-4.1 remains challenging. Compared to the extraction of individual
dataflow-related elements (evall), results for eval2 are significantly lower, highlighting
the difficulty of extracting dataflow relations from requirement text.

In the trace link recovery of dataflow-related elements (eval3), GPT-4.1 consistently out-
performs the SWATTR baseline when using the gold standard as input. For components,
the F2-score improves from 0.74 with SWATTR to 0.88 with GPT-4.1. For tracing nodes,
GPT-4.1 also achieves a high F2-score close to 0.90, while it struggles with the tracing of
entities and data. For entities, recall is relatively high (0.80), but precision remains low,
leading to many false positives. For both methods, tracing performance is poor for data
(e.g., GPT-4.1 F-2 0.247). Tracing element types other than components with SWATTR
leads to poor results, which is expected, as the heuristics were primarily designed for
component tracing.

When integrating the extracted elements from evall, performance decreases signif-
icantly for both methods. For components, GPT-4.1 still achieves high recall (0.79),
but precision drops strongly (0.30), resulting in many false positives and a lower F2-
score (0.58). SWATTR, in contrast, handles the input better, filtering out more false
positives and showing less performance degradation (F2-score 0.61). This highlights
the dependency of the trace link recovery on the quality of the underlying extraction
and shows that while GPT-4.1 can achieve superior results with high-quality inputs,
heuristic-based approaches like SWATTR remain more stable when confronted with
noisy element extractions.
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For the extraction of tracelinks for dataflows (eval4), the results showed that the LLMs
can be used to create trace links to their contained elements. Through tracing, many
of the false positive dataflows, which were extracted in eval2, were filtered out, as
only dataflows where source and target could be traced to a concrete architecture item
were returned. Through this, it was possible to identify all five dataflows annotated in
the requirements with modelIDs, and in addition, three more were found, which were
not yet labeled in the gold standard. After tracing the dataflow-related elements and
aggregating them to the dataflows extracted, some of the mistakes that the LLM made
in evall and eval2 were mitigated. As many of the mistakes in evall did not stem from
text mentions of elements not being extracted at all, but from wrongly labeling them,
the results could still be used for tracing the source and target. This comes from the fact,
that source and target are not typed and a dataflow can occur between component, node
and entity. Because the dataflows in eval4 were filtered based on whether both source
and target could be traced, many of the false-positive dataflows from eval2 describing
unconcrete dataflows were filtered out. The results show that the LLM-based approach
can recover dataflow trace links when both source and target are explicitly modeled,
and even identify additional valid flows not yet included in the gold standard. However,
these findings should be interpreted with caution, as the gold standard only contains
five annotated dataflows with modelIDs, which limits the representativeness of the
results.

Different threats to validity may affect the results of this work. One threat comes
from the cross-validation setup. The folds were not completely balanced, with three
folds containing 19 requirements and two folds containing 18 requirements. While
this does not strongly affect the overall results, as four requirements were used from
the training pool each, it may lead to minor differences in macro-averaged values.
Another threat is that the prompts were tested and adjusted specifically with GPT-4.1,
which may have introduced a bias toward this model and limited the neutrality of the
prompt design. When using few-shot prompting, the choice of examples may also affect
performance. This effect was mitigated to some extent by the 5-fold cross-validation,
as different requirements were included in training and evaluation across folds. Finally,
the annotation guidelines used during the annotation of the EVerest requirements were
adjusted iteratively, and the same definitions were also used to design the prompts.
This overlap may have influenced the evaluation, since both annotation and extraction
are based on similar assumptions about the definition of dataflow-related elements.

Another threat to validity in this evaluation arises from the limited coverage of the
gold standard, which only contains five fully labeled dataflows. This makes the recall
appear high for the trace link creation for dataflows, as all five dataflows were found,
while the actual ability to generalize to a larger set of requirements cannot be assessed.
Another threat, especially relevant for the qualitative evaluation in eval4, comes from
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the dataflow definition. Several requirements describe storage or control flow rather
than explicit data transfer, and classifying these as false positives was done by the author
alone, which definitely introduces subjectivity, as the evaluation involved manual judg-
ment in assigning TP, FP, and FN labels. These limitations reduce the generalizability
of the findings and suggest that the reported metrics should be interpreted as indicative
rather than absolute.
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7 Conclusion and Future Work

This thesis focused on extending existing traceability approaches towards security-
related requirements, particularly the tracing of dataflows. The goal was to evaluate how
large language models can be utilized to extract dataflow entities from requirements and
create trace links to architecture models. As a base for evaluation, a gold standard was
created for EVerest, where the requirements are fully labeled with SecLan element types
(cf. section 2.5). This gold standard provides a valuable information source beyond the
scope of this thesis, as labeled security-related requirements are considerably scarce.
The evaluation of the dataflow-related element extraction showed that GPT-4.1 can
reliably identify components and nodes with high recall and precision, while entities
and data elements remain more difficult. The extraction of complete dataflows was
considerably harder, with both recall and precision being low. This indicates that the
task remains challenging for LLMs. For trace link recovery of the dataflow-related
elements, the results showed that GPT-4.1 outperforms the SWATTR approach when
high-quality element annotations are available, particularly for components and nodes.
However, when integrating automatically extracted elements, performance decreased
strongly. SWATTR handled the noisy input more robustly, showing the dependency of
LLM-based recovery on the quality of the extracted elements. In the final evaluation
for the creation of traces to dataflows, combining the results of previously used steps,
the used approach was able to recover all five dataflows annotated in the gold standard
and found four further valid flows that were not labeled. At the same time, nine false
positives were observed, mainly due to dataflows being traced that did not match the
definition (cf. chapter 4). These results indicate that LLMs can identify valid trace links
for dataflows, but that the distinction between different relation types is still a major
source of errors.

This thesis provides different points where future work could be valuable. As the gold
standard is limited in size, especially regarding dataflows, testing it across other projects
is necessary for more representative evaluations. Future work could also investigate
improved prompting strategies and fine-tuning. As the gold standard was finished
relatively late, it was not viable to use automated prompt optimization.

The evaluation showed that LLM-based and heuristic approaches have complementary
strengths. While LLMs achieved higher recall, the heuristic approach used in SWATTR
was more stable under noisy input. Combining both heuristics with LLM-base extraction
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may help in balancing out recall and precision of extracted trace links. As a foundation
for integrating traceability for dataflows, the extracted dataflow trace links only directly
link the source and target to the respective architecture items. Future work could build
on this by moving beyond direct source and target tracing towards graph-based tracing,
where relevant parts of the dataflow graph are also traced. In this way, traceability
could be extended to entities that are not explicitly mentioned in the requirement text
but are still involved in the modeled dataflow. In summary, this thesis demonstrates
both the potential and the current limitations of LLM-based approaches for extending
traceability towards security-related dataflows. This foundation provides a starting
point for future research on combining LLMs and heuristics to achieve more accurate
and robust traceability in security-critical domains.
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Table 8.1: Evaluation results dataflow-related element extraction, macro for each type across all folds

Component Data Node Entity macro
Method P R F1 F2 P R F1 F2 P R F1 F2 P R F1 F2 P R F1 F2
Zero-Shot
SC 0.583 0.829 0.676 0.756 0.269 0.731 0.391 0.540 0.169 0.779 0.273 0.441 0.282 0.574 0.374 0.470 0.326 0.728 0.428 0.551
JC 0.698 0.860 0.763 0.816 0.575 0.896 0.694 0.800 0.594 0.760 0.661 0.715 0.466 0.431 0.440 0.433 0.583 0.737 0.640 0.691
Few-shot random
SC 0.683 0.878 0.766 0.828 0.422 0.743 0.537 0.643 0.349 0.773 0.474 0.613 0.429 0.577 0.486 0.534 0.471 0.743 0.566 0.654
JC 0.726 0.883 0.793 0.843 0.640 0.891 0.741 0.823 0.582 0.847 0.681 0.768 0.549 0.455 0.487 0.466 0.624 0.769 0.676 0.725
Few-shot deterministic
SC-positve 0.662 0911 0.763 0.844 0.365 0.755 0.487 0.616 0.232 0.771 0.350 0.511 0.345 0.582 0.429 0.507 0.401 0.754 0.507 0.619
SC-balanced 0.633 0.887 0.734 0.817 0.402 0.801 0.528 0.660 0.288 0.814 0.417 0.582 0.376 0.530 0.431 0.482 0.425 0.758 0.528 0.635
JC deterministic 0.723 0916 0.801 0.863 0.584 0.937 0.718 0.835 0.612 0.854 0.707 0.785 0.603 0.414 0.483 0.438 0.630 0.780 0.677 0.730
Models
JC few-shot det Llama 3 0.644 0.554 0.578 0.560 0.564 0.421 0472 0.439 0.867 0.290 0.423 0.332 0.496 0.256 0.333 0.281 0.643 0.380 0.452 0.403
JC few-shot det GPT 4.1 mini  0.739 0.853 0.788 0.825 0.692 0.782 0.729 0.758 0.570 0.719 0.621 0.671 0.471 0.309 0.368 0.329 0.618 0.666 0.627 0.646
Baseline
SWATTR 0.162 0.806 0.268 0.444 0.076 0.662 0.136 0.259 0.022 0.513 0.042 0.093 0.054 0.356 0.094 0.167 0.079 0.584 0.135 0.241
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Table 8.3: Qualitative evaluation of trace link recovery for dataflows (eval4), part 1

Req.

ID

Dataflow

Trace Links

Notes

7

CSMS — OCPP mod-
ules: malformed in-
put from the CSMS

CSMS — ChargingSta-
tionManagementSys-
tem (PCM RC)

OCPP modules —
OCPP (PCM Compo-
nent)

TP - Both endpoints cor-
rect, no data element
traced

34

charger — CSMS:
transaction related
data, telemetry, in-
formation about up-
dates

CSMS — ChargingSta-
tionManagementSys-
tem (PCM RC)

charger — Charg-
ingStation (PCM RC)
data: Transaction-
Request; Powerme-
ter; FirmwareUp-
dateRequest / Update-
FirmwareRequest /

SignedUpdateFirmwar-

eRequest / Firmware-
UpdateResponse

TP - Endpoints correct;
“updates” mapped to mul-
tiple datatypes.

65

charger — CSMS:
OCPP messages

CSMS — ChargingSta-
tionManagementSys-
tem

charger — Charg-
ingStation

TP — Endpoints correct;
no data

74



Table 8.4: Qualitative evaluation of trace link recovery for dataflows (eval4), part 2

Req. Dataflow Trace Links Notes
ID
15 EvseSecurity —  EvseSecurity module TP — Endpoints correct;
TPM: private keys — EvseSecurity (PCM  (TPM added).
used for TLS Component)
TPM — TPM (PCM
RC)
data: GetCertificate-
SignRequestResult
8 EV — EV — Car (PCM RC) TP — Endpoints correct;
ISO15118modules: ~ 1SO15118 modules — ISO15118 resolved via
malformed input EvseV2G (PCM Compo- EvseV2G.
nent)
80 EVerest — log file: log file — Upload- FP — “log file” wrong

customer identifica-
tion means, contract
identification means,
ID tags, EV MAC ad-
dresses, bank infor-
mation

LogsRequest (PCM
Datatype)

EVerest — System
(PCM Component);
bank information —
BankSessionToken
EV MAC addresses —
Evse (PCM Compo-
nent)

traced; no "EVerest"
wrong traced found.
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Table 8.5: Qualitative evaluation of trace link recovery for dataflows (eval4), part 3

Req. Dataflow Trace Links Notes
ID
75 libevse-security — libevse-security — TP (not in GS) — Cor-
TPM: private keys, EvseSecurity (PCM rect mapping; flow not
certificates Component) annotated in GS.
TPM — TPM (PCM
RC); TLS — CloudSys-
tem
data: CertificateType;
CertificateHashData
71 charging station — charging station — FP — Storage (data-at-
TPM: security certifi- ChargingStation (PCM  rest), not a dataflow.
cates RC)

TPM — TPM (PCM
RC)
data: CertificateType

34 (FP) EVerest — payment
provider: relevant in-
formation

EVerest — System
(PCM Component)
payment provider —
CloudSystem

FP — EVerest is not Sys-
tem component
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Table 8.6: Qualitative evaluation of trace link recovery for dataflows (eval4), part 4

Req. Dataflow Trace Links Notes
ID
36 EVerest — CSMS: EVerest — System FP — EVerest is not Sys-
authentication (PCM Component) tem component
tokens CSMS — ChargingSta-
tionManagementSys-
tem (PCM RC)
data: Token
45 charger — log files: charger — Charg- FP — “log files” traced
MAC addresses ingStation wrong
log files — Upload-
LogsRequest / Upload-
LogsResponse
data: HardwareCapabil-
ities
33 OCPP — EVerest: OCPP — OCPP (PCM  FP EVerest is traced
start charging Component) wrong
request EVerest — System
(PCM Component)
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Table 8.7: Qualitative evaluation of trace link recovery for dataflows (eval4), part 5

Req. Dataflow Trace Links Notes

ID

70 APImodule — exter- API module — API TP (not labeled in GS)
nal system: session (PCM Component) — Correct mapping
events external system —

CloudSystem (PCM RC)

35 (charger — external charger — Charg- TP (not in GS) — Cor-
system: health infor- ingStation (PCM RC) rect mapping; not in GS.
mation external system —

CloudSystem (PCM
Component)
data: Diagnostics
0 EVerest — database: EVerest — System FP — EVerest traced

transaction informa-
tion

(PCM Component)
database — Store (PCM
Component)

wrong

Table 8.8: Qualitative evaluation of trace link recovery for dataflows (eval4), part 6

Req. Dataflow Trace Links Notes
ID
0 libocpp — SQLite libocpp — OCPP (PCM FP Storage relation, not
database: transac- Component) a dataflow.
tion information SQLite database —
SqlLiteDatabase (PCM
Component)
47 Auth module — Auth module — Au- FP — Control flow (per-

EvseManager:
thentication result,
permission to charge

au-

thentication (PCM
Component)
EvseManager — Evse-
Manager (PCM Compo-
nent)

missions), not dataflow
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