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The growing capabilities of Large Language Models (LLMs) have made them

valuable across diverse domains. Retrieval-Augmented Generation (RAG) sys-

tems can adapt these models to specific contexts, such as working with existing

code repositories to perform software engineering tasks. External data sources

and documents, including knowledge graphs, can be used to augment LLMs by

giving them access to knowledge not present in their training data. This semi-

nar thesis explores various applications of RAG in software engineering, such

as requirements traceability, code and documentation generation, test creation,

and vulnerability detection. It also examines the challenges that current RAG

techniques face.

Die wachsenden Fähigkeiten von Large Language Models (LLMs) machen

sie in einer Vielzahl von Anwendungsbereichen nützlich. Retrieval-Augmented

Generation (RAG)-Systeme können diese Modelle an spezifische Kontexte

anpassen, wie beispielsweise die Arbeit mit bestehenden Code-Repositories,

um Software-Engineering-Aufgaben zu erfüllen. Externe Datenquellen und

Dokumente, darunter Wissensgraphen, können genutzt werden, um LLMs

Zugang zu Wissen zu geben, welches nicht Teil ihrer Trainingsdaten ist. Diese

Seminararbeit untersucht verschiedene Anwendungen von RAG im Software-

Engineering, wie Rückverfolgbarkeit von Anforderungen, Code- und Dokumen-

tationsgenerierung, Test-Erstellung, und Schwachstellenerkennung. Darüber

hinauswerden dieHerausforderungen analysiert, denen aktuelle RAG-Techniken

ausgesetzt sind.
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1 Introduction

1 Introduction

The advent of Large Language Models (LLMs) has enabled performing complex tasks

across a wide range of domains. Examples include AI-generated content in general [61],

medical question-answering [53], and software engineering [25, 46]. State-of-the-art LLMs

like GPT-4o, GPT-o1, or Google’s recent Gemini Flash models are trained on enormous

amounts of data, including literature, web articles, and code. A set of benchmarks such as

SWE-bench [31] have been proposed to test the performance of LLMs across a variety of

topics, including software engineering.

These benchmarks demonstrate a consistent increase in performance over time as

more powerful models are released. With growing capabilities comes the desire to utilize

these models in narrower contexts, such as specific business domains or individual code

repositories.

However, to perform some tasks reliably, LLMs must have access to up-to-date and

domain-specific knowledge. Without this knowledge, the relevance and accuracy of results

cannot be guaranteed. To address this limitation, an LLM must have access to external

documents. One possibility is to enrich the prompt given to the LLM with additional

information relevant to the task, a process called Retrieval-Augmented Generation (RAG)

[33].

In software engineering, many tasks require considering multiple components of a

codebase rather than focusing on a single class or module. A naive approach of integrating

an entire codebase into the model’s context is impractical. First, most current LLMs

have limited context windows – OpenAI’s GPT-4o and o1 models, for instance, support

a maximum of 128,000 tokens as of January 2025 [43]. Concretely, OpenAI currently

supports at most 128.000 tokens for their GPT-4o and o1 models as of January 2025 [43].

Second, even with extensive context window sizes, such as Google’s Gemini 1.5 Pro, which

supports up to 2 million tokens [20], identifying the most relevant code snippets for a

given query remains a significant challenge. Thus, effective retrieval mechanisms are

necessary. Apart from the goal of increasing accuracy due to the availability of context-

specific information, integration with external sources allows for novel applications, such

as automated requirements tracing.

This thesis delves into the applications of RAG in software engineering, with a special

focus on graph-based RAG approaches. The foundational concepts of knowledge graphs

and their integration with LLMs are explored in Section 2 to establish the technical

background for understanding graph-based RAG systems. Subsequently, the thesis presents

several applications of Graph RAGwithin software engineering in Section 3. Covered topics

include requirement analysis and traceability, design, code and documentation generation,

unit test generation and software verification, as well as vulnerability detection. Moreover,

the practical challenges and limitations of RAG with current LLMs are discussed in the

fourth section. Finally, the key takeaways are summarized and potential areas of future

research are given.
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2 Foundations

This section introduces large languagemodels and prompting techniques referenced in later

parts, as well as retrieval-augmented generation and knowledge graphs as a preliminary

step toward understanding graph-based retrieval augmented generation.

2.1 Large Language Models

Large Language Models are the primary technology behind recent advances in artificial

intelligence systems like ChatGPT. Users can interact with an LLM using text, by verbal

communication or via images depending on the modalities the model supports. The process

of writing natural language instructions to influence a model’s output is called prompting

[59].

Effective prompting can have a great influence of the output quality of LLMs [47, 59].

Several paradigms have emerged that aim to increase the output quality of LLMs, including

few-shot prompting, chain-of-thought (CoT), and tree-of-thought (ToT) [47]. Few-shot

prompting refers to the strategy of including several examples of how to solve a task in

the prompt. This contrasts with zero-shot prompting where no examples are given [7].

The CoT prompting strategy improves on few-shot prompting by including intermediate

reasoning steps in the examples [52]. This is shown to increase performance across several

tasks.

For complex tasks that require explorations or strategic lookahead, the previous prompt-

ing techniques fall short. Yao et al. [56] propose the tree of thoughts framework that

encourages exploration over thoughts that serve as intermediate steps for general problem

solving with LLMs. The LLM’s ability to generate and evaluate thoughts is combined with

search algorithm to enable a systematic exploration of thoughts.

2.2 Retrieval-Augmented Generation

LLMs such as ChatGPT are based on the Generative pre-trained transformer (GPT) archi-

tecture. As such, they are trained with large amounts of data during the training phase,

which is computationally and energy-intensive. Although capable open-source models

are available [22], the most powerful models such as OpenAI’s GPT-4o or Anthropic’s

Claude Sonnet 3.5 are proprietary [40, 5]. Due to their proprietary nature, it is infeasible

for external parties to update these models with the latest available knowledge or retrain

them for improved accuracy on specific tasks. However, this leads to a loss of flexibility

when applying the models in narrow application domains, where they often lack access

to problem-specific knowledge. This limitation frequently results in hallucinations, a

known issue with current models. Hallucinations refer to the observation that models will

generate the most likely output to a prompt, even if the answer is incorrect or cannot be

derived due to the lack of evidence in the data available to the LLM [57].

Retrieval-Augmented Generation (RAG) attempts to mitigate these issues. The term was

first introduced by the authors of a 2020 paper titled “Retrieval-Augmented Generation

for Knowledge-Intensive NLP Tasks” [33]. It refers to the process of retrieving relevant
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2 Foundations

Figure 1: An example knowledge graph [18]

external knowledge and integrating it into the prompt given to the model to generate

more accurate responses.

The survey paper by Gao et al. [19] categorizes common RAG paradigms into Naive RAG,

Advanced RAG, and Modular RAG. Naive RAG employs a simple retrieve-read paradigm.

It involves preprocessing external data into small chunks stored as vector embeddings in a

vector database (indexing). Given a user query, the most relevant chunks are retrieved

based on semantic similarity (retrieval) and are used to form the final prompt given to the

LLM, which then produces an output (generation).

Advanced RAG refines this process by introducing steps before and after the retrieval

stage. In the pre-retrieval stage, the original query is rewritten or expanded to clarify

user intent. Additionally, the database index can be adjusted to better fit the given task.

Retrieved chunks from the vector database are then reranked based on relevance and

shortened to ensure that the model is not overloaded with information.

Jeong [28] lists guidelines for implementing RAG systems in practice. Proposals include

trying out diferent indexing strategies (indexing-based vs. embeddings), applying query

transformations or rewriting after unsuccessful retrievals, or using different indices per

specialized for different types of questions.

2.3 Knowledge Graphs

Although there is no universally accepted definition [24], a knowledge graph (KG) can

be seen as a graph designed to model knowledge about the real world [24]. In this graph,

nodes correspond to entities of interest, and edges depict the relationships between these

entities. In their simplest form, knowledge graphs can be stored in common relational

databases as a set of triples of the form (subject, predicate, object). For example, the triple

(Paris, isCapitalOf, France) represents the fact that Paris is the capital of France. For some

use cases, one may want to enrich a node with additional metadata or properties, resulting

in a property graph. Neo4j is a popular graph database that supports storing and querying

such property graphs [16, 4].

Figure 1 depicts an example of a knowledge graph linking potential cases of Covid-19

to related information. Nodes consist of target entities e1 - e6 shown in green and red,

locations such as city1 or properties like covid19_case. The edges are labeled and describe

relationships between nodes such as worksWith or type.
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2.4 Graph-Based RAG
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Figure 2: Graph-Based Retrieval-Augmented Generation, adapted from [19], [58]

Various KGs have been constructed to facilitate information retrieval or question-

answering such as those used in Google’s search engine [27], or social network analysis

[1]. Wikidata [51] is a notable example of a publicly accessible knowledge graph that

comprises more than 1.57 billion tuples. It simplifies the extraction of Wikipedia’s data

and allows users to perform queries on the data.

To construct knowledge graphs in practice, a multitude of approaches can be employed.

Some knowledge graphs, such as Wikidata, are compiled and updated by contributors.

However, ideally, the state of a knowledge graph should be synchronized with the un-

derlying data base. This motivates the development of tools to automate both the initial

construction and continuous updating of knowledge graphs.

In their journal article, Zhong et al. [62] survey more than 300 methods for constructing

knowledge graphs automatically. They identify knowledge acquisition, refinement and

evolution as the three main tasks of knowledge graph construction. Knowledge acquisition

includes identification of entities in the original text – a process called Named Entity

Recognition (NER) – along with entity typing and linking. Linking refers to fine-grained

categorization of entities and connecting them to existing nodes in the knowledge graph.

Coreference resolution is another step that tries to detect different terms that refer to the

same entity. Finally, semantic relationships between entities are discovered, forming the

edges in the knowledge graph.

The initial knowledge graph obtained after the first step can be incomplete. To improve

it, missing relationships can be predicted using techniques such as embeddings and deep

learning models. Other knowledge graphs can also be used for this task.

As a final step, knowledge evolution involves handling temporal or conditional changes

in entities. A simple solution is to also store the timestamp of a tuple such as (Scholz,

chancellor, Germany).

Trajanoska, Stojanov, and Trajanov [50] show that LLMs such as ChatGPT can be used

to simplify the automatic creation of knowledge graphs. The authors utilize LLMs to

perform named entity recognition, relation extraction, and entity linking. They compare

relation extraction using the specialized model REBEL (Relation Extraction by End-to-

End Language Generation) [26] but find that ChatGPT often fails to extract meaningful

relationships, resulting in a less structured and larger knowledge base.
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2 Foundations

2.4 Graph-Based RAG

Knowledge graphs are shown to enhance the reasoning abilities of LLMs [29]. Microsoft

Research introduces the term GraphRAG as an improvement over existing RAG systems

for question answering in both a blog post
1
and a preprint paper [14]. Their approach

comprises the phases of initial knowledge graph construction, hierarchical community

detection within the graph, and modular summarization. An LLM is used for entity

recognition and relation extraction, as described in Section 2.3 on knowledge graph

construction. The nodes in the graph are entity summaries, which distinguishes their

graph structure from other knowledge graphs. Additionally, GraphRAG uses weighted

edges, where the weights are proportional to the number of detected relationships between

node pairs. The edge weights facilitate community detection using the Leiden algorithm,

which groups nodes that are more strongly connected to each other than to nodes in other

parts of the graph. A summary of each community at different hierarchical levels is used

to answer the query in parallel, resulting in the global answer given to the user.

In the following paragraphs, the term Graph RAG (GRAG) shall not refer to the original

GraphRAG paper but to any RAG system that uses a graph in some form. Figure 2

visualizes the general structure of a GRAG system. It depicts the naive RAG paradigm as

described in Section 2.2 (see [19]) but adjusts the indexing and retrieval parts. The external

documents are stored in a graph database instead of a vector database. The exact structure

of the constructed graph depends on the application. Nodes may be “discovered” (in the

GraphRAG paper [14], nodes are summarized entities) or explicitly defined (e.g., in later

described papers nodes are classes ([3]) or other code entities such as functions ([35])).

During retrieval, the graph database is queried to fetch relevant parts of the knowledge

graph that help answering the user question.

A natural question to ask is how LLMs can query data structures such as knowledge

graphs to answer user queries. StructGPT is a framework enabling LLMs to interface

with structured data in the form of tables, databases consisting of multiple tables, and

knowledge graphs [30]. The framework facilitates question answering on tables and

knowledge graphs. To answer questions on a KG, the LLM can invoke two operations

in their initial response: Extract_Neighbor_Relations(e) and Extract_Triples(e, {r}). These
extract all outgoing neighboring relations of entity e as a list of edge names and all triples

where e is the subject, respectively. The two operations are called in order and their

results are linearized after each operation to formulate a prompt. The objects of the most

relevant triples are selected as the final answer. The authors note some shortcomings of

StructGPT, highlighting that errors can occur at several points during the retrieval and

generation phases. Errors might occur during the retrieval of relevant relations or triples,

leading to incomplete or irrelevant evidence for reasoning. Even with correct triples, the

LLM sometimes struggles to generate accurate answers due to reasoning complexity or

ambiguities in the question.

1https://www.microsoft.com/en-us/research/blog/graphrag-unlocking-llm-discovery-on-

narrative-private-data/
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Phase Query Discussed

papers

Requirement

analysis

base query AND ("requirement engineering" OR

"requirements engineering" OR "requirement

analysis" OR "requirements analysis" OR

"requirement specification" OR "requirement

traceability" OR "requirements traceability")

[3, 17, 38]

Design base query AND ("software design" OR "system

design" OR "program design" OR "architectural

design" OR "system architecture")

Implementation base query AND ("implementation" OR

"coding" OR "code generation" OR

"documentation generation")

[35, 37]

Testing base query AND ("test generation" OR "test

case generation" OR "test automation" OR

"software verification")

[48, 55]

Operation or

maintenance

base query AND ("software maintenance" OR

"bug fixing" OR "change management" OR

"legacy systems" OR "software evolution" OR

"system updates" OR "vulnerability detection")

[12]

Table 1: Phase in the waterfall model, Google Scholar search query, and papers discussed in

the thesis. The base query is: ("software engineering") AND ("retrieval augmented

generation" OR "RAG") AND "graph"

3 Applications of Graph RAG in Software Engineering

The tasks of a software engineer span requirements engineering, analysis, design, test-

ing, debugging, and maintenance, as well as broader activities like project management,

stakeholder communication, and environment administration [54]. These tasks encom-

pass both technical work, such as coding and configuring software, and organizational

responsibilities, such as team collaboration and server management.

In this section, the waterfall model serves as a framework to explore the applications of

RAG in the major phases of software development. For each of the phases requirement

analysis, design, implementation, testing and operation or maintenance [2], related papers

are searched using the literature search engine Google Scholar.

Table 1 shows the queries for each phase and the number of results for each query as of

February 2025. Only publications since 2022 are considered as November 2022 marks the

initial release of GPT-3.5 [41].

It should be highlighted that the queries are not chosen to cover the full range of software

engineering tasks. Rather, they are chosen to discover interesting applications of GRAG

systems across the breadth of a typical development cycle. Additionally, some tasks such

as ensuring the traceability of requirements might not only be practiced during a single

phase in the waterfall model but be an ongoing effort. Still, it can be regarded as part of
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3 Applications of Graph RAG in Software Engineering

managing requirements in general. Thus it is included in the query for the first phase of

the waterfall model.

For the design phase of the waterfall model, no papers are discussed in this thesis as

the search query yielded no directly relevant results. One possible reason for this scarcity

of research in this area could be the unstructured nature of design artifacts compared to

artifacts in other phases. Unlike requirements, source code, or test cases, which often

follow standardized formats can be represented as text, design and architecture artifacts

are often expressed through informal diagrams. Therefore, it is harder to come up with an

appropriate retrieval mechanism for these artifacts.

In the following subsections, papers are discussed for all phases except for the design

phase.

3.1 Requirements Traceability

Requirement engineering involves eliciting functional and non-functional requirements

that a system must meet to fulfill its intended purpose and satisfy stakeholder expecta-

tions [32]. Requirement traceability refers to the practice of maintaining the connections

between individual requirements and their origins, related documentation, design, imple-

mentation, and testing artifacts throughout the project lifecycle [21]. These origins may

include stakeholder needs, regulatory standards or technical specifications. Traceability is

essential for change management, as it helps engineers assess the impact of modifications

on the system architecture and components before implementation. Manually establishing

and maintaining these connections is error-prone and impractical for large, dynamic

codebases. Two recent conference papers [3, 17] and a preprint [38] are discussed that

present RAG-based approaches to address this challenge. The GRAG approach by Ali,

Naganathan, and Bork [3] is compared to the approach by Fuchß et al. [17] that uses RAG

without a graph database.

The first approach by Ali, Naganathan, and Bork [3] called Retrieval Augmented Gener-

ation Requirements Traceability (RARTG) divides the process into indexing and querying

stages, as shown in Figure 3. In the indexing stage, multiple indices are constructed from

the code documents: a code documents keyword index, a vector index and a knowledge

graph index. The code documents keyword index is created by preprocessing the code

documents with stemming and stopword removal. These are stored in vector database to

enable efficient querying later. To create the second vector index, a multi-lingual embed-

ding model is used to encode the code documents into vector representations (emebddings)

stored in a vector database for semantic similarity-based retrieval. A knowledge graph

index represents relationships between classes and methods, where nodes correspond to

class names (augmented with documentation strings, if available), and edges represent

method calls, such as (ClassA, calls, ClassB). Nodes in the graph are class names coupled

with existing documentation strings of that class if available.

In the retrieval stage, the constructed indices are used to retrieve relevant classes based

on a requirement expressed in natural language. The requirement is inserted into a prompt

template, which asks the LLM to identify related class names from the retrieved documents.

Linking Software System Artifacts (LiSSA) [17] is a RAG-based approach for traceability

link recovery (TLR) that aims to be more general than the approach by Ali, Naganathan,
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3.1 Requirements Traceability
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Figure 3: Retrieval Augmented Requirements Traceability Generation, adapted from [3]

and Bork [3]. It not only allows traceability of requirements to classes in the code but

allows to trace other artifacts including source code, architecture documentation and

architecture models as well. Different levels of granularity are supported for source and

target elements, such as methods, classes and files for source code. All input elements are

first transformed into a textual representation to facilitate embedding and storage into a

vector database and later retrieval. The retrieved artifact pairs are formatted into prompts

to an LLM to determine if a trace link exists between them. CoT prompting is compared

to a simple yes-no question prompt.

Next, the two approaches are compared based on their published evaluation results. This

comparison is feasible because both papers use the same benchmark datasets SMOS, iTrust

and eTrust in their evaluation and report the metrics precision, recall, and the resulting

F1-score. These datasets, compiled by the Center of Excellence for Software & Systems

Traceability (CoEST) [9], contain natural language requirements, source code, and trace

links between them.

Figure 3.1 presents the evaluation results of both approaches on the three datasets.

FTLR (Fine-Grained Traceability Link Recovery) [23] serves as a baseline, with FTLROPT

representing an optimized configuration. RARTG-C1 refers to the configuration of RARTG
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3 Applications of Graph RAG in Software Engineering

SMOS iTrust eTour

Approach
Dataset

P R F1 P R F1 P R F1

FTLROPT .314 .588 .409 .234 .241 .238 .505 .597 .548
RARTG-C1 .608 .126 .209 .289 .292 .290 .543 .242 .334

LiSSA-C1 .479 .379 .423 .171 .517 .257 .107 .435 .172

LiSSA-C2 .632 .184 .285 .206 .493 .290 .378 .711 .493

LiSSA-C3 .590 .195 .294 .199 .451 .276 .409 .734 .526

Table 2: Precision, recall and F1-scores for requirements to code traceability [3, 17]

[3] that achieves the highest F1-score for the considered datasets. Additionally, three

configurations of LiSSA [17] with the highest F1-scores per project are displayed: LiSSA-

C1 applies sentence-level granularity for the requirements, method-level granularity for

the traced source code and a CoT prompt passed to the LLM. LiSSA-C2 performs no

preprocessing, passing the entire artifact to the LLM while using a simple question-answer

prompt. LiSSA-C3 also omits preprocessing but employs a CoT prompt that instructs the

model to reason before answering. The results in Figure 3.1 show that LiSSA outperforms

RARTG on the SMOS dataset in terms of F1-score. On the iTrust dataset, the F1-score

of RARTG (0.290) is slightly higher or comparable to those of LiSSA. In contrast, LiSSA

outperforms RARTG on the eTour dataset when using the C2 and C3 configurations.

Across all datasets, LiSSA exhibits higher recall than RARTG, even for configurations not

included in the table. Conversely, RARTG consistently achieves higher precision values for

all projects. Specifically, for iTrust and eTour, precision is higher than all LiSSA variants

evaluated in the paper [17].

In summary, while LiSSA outperforms RARTG on two of the three datasets, the results do

not conclusively indicate a superior approach. Additionally, the results are highly sensitive

to configuration parameters such as preprocessing granularity and prompting techniques.

A configuration that performs well on one dataset does not necessarily generalize to

another. Notably, among all three configurations, the LiSSA-C2 configuration achieves the

highest F1-scores on the iTrust and eTour datasets but the lowest on the SMOS dataset.

This suggests that no universal solution exists; rather, configurations must be selected for

each individual project.

The third preprint aims to help in automating the process of determining whether the

set of requirements in a Software Requirements Specification (SRS) document adheres to a

higher-level standard [38]. An initial graph is constructed from the higher-level standard

which can then be queried to check for potential non-compliance of the SRS to the standard.

The documents of the standard are chunked, entities and relationships are extracted and

summarized using an LLM. Next, community detection and summarization is performed.

To evaluate their approach, the authors manually trace the requirements of the SRS

documents of two projects. For each requirement, it is determined whether it is compliant,

non-compliant or cannot be traced to the standard. During retrieval, the RAG system

is tasked to reason on compliance to the standard based on a set of similar documents

retrieved from the knowledge graph. The evaluation indicates that the graph RAG approach
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3.2 Code Generation

performs better than a baseline RAG system. However, there are several instances where

the model misclassifies the requirements.

3.2 Code Generation

Automated code generation tools such as LLMs can help turn requirements into application

code more quickly using natural language. To effectively integrate the new code into

an existing codebase or infrastructure requires extensive knowledge about the domain,

architecture, and coding standards.

The CodexGraph framework [35] attempts to facilitate this using graph-based RAG with

a repository-level knowledge graph. The nodes of the graph represent code elements such

as modules, classes, methods, functions, fields, and global variables that are obtained from

the code. Nodes also contain metadata such as file names or code snippets. Edges describe

the relationships between pairs of such elements and can be either “contains”, “inherits”,

“has method”, “has field”, and “uses”. While this schema of available node and edge types

is specific to Python it can be adjusted to other languages that consist of different or

additional kinds of code elements. The graph is stored in a Neo4j graph database that can

be queried with the query language Cypher.

The code graph is constructed in two phases. In the first phase (“shallow indexing”), an

initial graph is constructed in a single pass. As some relationships such as “inherits” cannot

be directly inferred, the abstract syntax tree (AST) of each code file is further analyzed.

This completes the code graph by inserting the missing edges.

Two specialized LLM agents faciliate querying. The primary LLM agent receives the

original user query and transforms it into natural language instructions to the second

LLM. An exemplary instruction may be “List all methods and global variables used by

TaskManager”. A second translation agent then devises Cypher graph queries from the

instructions. The query is executed and relevant nodes and edges are retrieved. Multiple

rounds of query generation may be performed if LLM agents determine that the retrieved

context is still insufficient to answer the user’s query. The CodexGraph approach shows

increased benchmark performance compared to zero-shot prompting.

The RepoUnderstander [37] framework is able to resolve real-world GitHub issues using

a graph RAG approach. During knowledge graph construction, the set of files, classes and

functions present in the code base is first organized into a hierarchical tree. This tree is

then extended into a reference graph that contains function call relationships. A unique

aspect of RepoUnderstander is its use of Monte Carlo Tree Search to create multiple paths

through the repository knowledge graph. As a path is expanded, the code snippet is given

to an LLM that is asked to rate the relevance to solving a given issue. The most relevant

paths are then used during generation.

3.3 Documentation Generation

Code documentation is a tangential facet of developing a system. Ideally, code documenta-

tion, both as comments within the code and as external documentation, should be complete

and consistent [49]. However, keeping documentation up-to-date with the current state of

the code can be time-consuming if done manually.
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3 Applications of Graph RAG in Software Engineering

RepoAgent [36] is a framework to automate the generation and upkeep of repository-

level documentation using a RAG approach. Initially, the source code files of the repository

are individually parsed into an AST to obtain information about all classes and functions,

including their types, names, and code snippets. This data is organized into a project

tree that mirrors the repository’s directory layout. The project tree is combined with

bidirectional reference relationships between components, forming a directed acyclic

graph.

During retrieval, relevant code from the project tree is fetched and given as context

to the LLM. For each class and function, the LLM is instructed to generate Markdown

documentation that includes detailed descriptions, parameter explanations, examples, and

usage notes.

To address the problem of maintaining documentation, RepoAgent supports automatic

updates when the code in a repository changes. Updates are localized to the parts of

the codebase that have been modified. A human evaluation shows that the generated

documentation is often preferred over human-written documentation.

3.4 Test Generation

Apart from application code generation, LLMs can also help create tests for existing code.

In a recent preprint by Shin et al. [48], the authors measure the effects of RAG techniques

on unit test generation compared to zero-shot prompting. They provide the model with

different kinds of domain knowledge and ask it to generate unit tests for popular Python

projects. The types are API documentation, GitHub issues, StackOverflow question and

answers, and all of them combined. Four different LLMs (GPT-3.5-Turbo, GPT-4o, Mistral

Mixture-of-Experts 8x22B, LLama 3.1 405B) are compared and the metrics AST parse rates,

execution rates, pass rates and line coverage are collected.

The paper shows that OpenAI’s model GPT 4o is able to achieve the highest parse

and execution rates amongst the evaluated models. This coincides with the fact that this

model is generally the most powerful model among the four [40]. Providing GPT-4o with

additional documents largely improves execution rate and code coverage. However, for

less powerful models such as the open-source Mistral model, injecting relevant documents

into the prompt can even lead to a degradation of the metrics. The authors explain this

with the fact that the lengthy additional documents provided to the models can distract

them from focussing on the task of generating working unit tests.

One aspect where RAG seems particularly valuable is if the code to be tested requires

further explanations or code examples. In that case, supplying GPT-4o with GitHub issues

is shown to lead to coverage of code lines otherwise untested.

3.5 Fuzz Driver Generation

Fuzzing is a technique that can help uncovering vulnerabilities or bugs of an application

or library by supplying it with unexpected or malformed data [39]. Various fuzzers exist

that can create such inputs for a given program [34]. Fuzz drivers are components that

define how input generated by a fuzzing tool interacts with the target software. It must

ensure that functions to be tested are correctly invoked.

12



3.6 Vulnerability Detection

A recent preprint by Xu et al. [55] presents a tool called CKGFuzzer which is able to

automate the fuzz driver generation by using GRAG. A knowledge graph is constructed

for a given codebase using an AST of the code where nodes are either files, functions

or external library functions. Edges can either indicate function calls or containment

relationships for a file containing a function. Given an API to test, the KG is queried to

generate relevant API combinations. Compared to testing an API individually, the aim is

to increase code coverage by creating more complex execution paths. Based on the API

combinations, an LLM is asked to generate a fuzz driver. If the resulting driver code is not

executable, it is iteratively refined by an LLM. A notable detail is that a knowledge base is

maintained that persists across iterations to store correct API usage patterns.

3.6 Vulnerability Detection

The last phase of the software development process in the waterfall model is concerned

with operating and maintaining the software produced in the previous phases. One aspect

of maintenance is the detection and removal of vulnerabities in the code.

The authors of the Vul-RAG paper [12] show how a RAG system combined with a

knowledge base of known vulnerabilities can be used to perform vulnerability detection in

a codebase. The knowledge base is constructed by analyzing how existing vulnerabilities

in the Linux kernel were fixed. An LLM is instructed to extract three aspects from each

vulnerability: the functionality of the code where the vulnerability is observed, the causes

of the vulnerability and a change to the code that fixes the vulnerability. These are

summarized and inserted into the knowledge base.

Given a code snippet to analyze for potential vulnerabilities, a second LLM (here: GPT-4)

first retrieves knowledge on vulnerabilities in functionally similar code from the knowledge

base. Using this knowledge on causes of the vulnerabilities and a solution to fix it, the

LLM is asked to determine whether the given code is vulnerable and explain its reasoning.

In their evaluation, they find that the explanation given by Vul-RAG helps developers

better understand a given vulnerability in a code snippet compared to no additional system.

Further, it outperforms GPT-4 that does not use RAG, and a GPT-4 RAG system that can

find similar code snippets but does not include additional vulnerability knowledge. This

highlights the usefulness of supplying a RAG system with additional knowledge. There

are instances in the dataset where out of the three systems, only Vul-RAG is able to

correctly identify the root cause of a vulnerability in the given code. However, there are

also instances where Vul-RAG is unable to precisely explain the reason why a code snippet

is vulnerable.

4 Current Limitations of Graph RAG

The premise of extending RAG systems with knowledge graphs is to improve the accuracy

of query answering in narrow or context-specific domains compared to RAG without

knowledge graphs. Yet the current approaches have indicated a range of shortcomings that

limit the applicability of RAG systems to real-world tasks such as software engineering.
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4 Current Limitations of Graph RAG

In this section, four limitations of current (G)RAG systems are presented based on an

aggregation and analysis of issues found in the literature.

Insufficient Data Quality. The effectiveness of a RAG system heavily depends on the

quality of retrieved data [15]. Many of the presented works list concrete cases where the

low quality of data leads to incorrect answers. For instance, the VulRAG paper mentions

a case where an imprecise vulnerability description lead to a false negative [12]. Apart

from incomplete knowledge, highly similar documents that are not directly relevant to the

query can harm the effectiveness of a RAG system [10]. However, the inclusion of random

documents is unexpectedly shown to increase accuracy.

Cost vs. Output Quality. A general decision one must make when designing a RAG

system is the choice of the model to use. Several of the discussed works mention this

tradeoff [38, 48, 45]. Less powerful models such as GPT-4o-mini are typically more cost

effective than models with increased reasoning capabilities such as GPT-o1 ($0.60 / 1M.

output tokens for GPT-4o-mini vs. $60 / 1M. output tokens for GPT-o1 [44]). The authors

of [48] also note that the input token cost can vary significantly depending on the structure

of data injected into the prompt.

Unstructured Responses. Popular conversational models such as ChatGPT are

inherently flexible in their style of response. Although this adaptability makes these

models useful in a variety of domains and scenarios, it poses challenges in applications

that require precise output that adheres to a specific syntax. This is particularly important

when interacting with other software components that cannot parse unstructured text.

For example, one may want to further process the answer given by an LLM in response to

a request to provide the most relevant source code documents (see Section 3.1).

Some work has been done on addressing this issue. In a web article, OpenAI describes

an API feature called Structured Outputs [42] that makes the model respond in the com-

mon data exchange format JSON. Users can provide a JSON schema that determines the

structure of the output to which the model must adhere. To achieve this, a technique called

constrained decoding is employed. During generation, the model generates a response

by sampling arbitrary tokens. With constrained decoding, the set of possible tokens the

model can choose from is restricted to follow a fixed structure formalized by a context-free

grammar that is constructed based on the schema. Using this technique, conformance to a

JSON schema can be guaranteed.

Privacy Concerns. Applying (graph) RAG in a business context requires careful

attention to the protection of data. A paper by Bruckhaus notes that enterprises dealing

with sensitive customer or patient data must ensure that any employed RAG systems must

comply with security and privacy regulations [8].

Depending on company policy, some data cannot be shared with external parties, such

as OpenAI, via platforms like the ChatGPT website or their API. This rules out the use of

current state-of-the-art models such as GPT-4o. Instead, self-hosted, local models, such

as LLama 3.1 [22] may be used, although they are less powerful than their proprietary

alternatives.

Additionally, Zeng et al. [60] demonstrate that RAG systems are susceptible to data

extraction attacks. These attacks aim to retrieve sensitive documents accessible to the

LLM during the retrieval phase. Thus, it is important to ensure that the documents do not

contain any sensitive data as they could be revealed to users by careful prompting.
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Explainability. Explainable AI (XAI) is an active research field concerned with un-

derstanding the output and reasoning of AI models [13]. In the context of RAG systems,

explainability means being able to identify the documents that were used to generate the

final answer. This is particularly critical for highly-regulated indutries such as healthcare,

law or finance [6]. Bruckhaus argues that in these industries, a RAG’s system output must

be explainable and interpretable to allow businesses to trust the RAG systems [8].

5 Conclusion and Future Developments

This thesis explored Retrieval-Augmented Generation and possible applications in software

engineering across the various phases of the waterfall model, ranging from requirements

traceability, code generation, documentation generation, test and fuzz-driver generation

to vulnerability detection. Compared to using LLMs in isolation, a RAG approach offers

several advantages, such as increased accuracy without the need for fine-tuning. In

Section 3.1, a comparison between a RAG approach and a GRAG approach on the topic of

requirements traceability was conducted. The findings indicate that augmenting a RAG

implementation with a graph does not necessarily yield superior results.

As more powerful LLMs continue to be developed, their enhanced reasoning capabilities

enable new applications. However, due to the novelty of the research field, many presented

approaches lack generalization. Several papers only work for specific formats of the

input data [38, 55, 36]. The discussion on limitations further showed that trade-offs exist

regarding cost of operation, and that ensuring high quality of data is an important aspect

for making RAG work well in practice. Deploying RAG system in a business context

requires consideration of privacy concerns and, ideally, explainability of results. The

recent release of capable open-source models, such as DeepSeek-V3 that rivals state-of-the-

art proprietary models such as GPT-o1 [11] hints at the possibility that the dependence on

major technological companies such as OpenAI, Google, or Meta could shrink.

Looking ahead, future LLMs could ingest large parts of the codebase as context, without

leading to hallucinations. The techniques presented in the thesis could be combined into a

unified system capable of automating common software engineering tasks, eliminating

the need for specialized individual solutions.
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